def process_image(self, img, resize=None, crop_size=None): p_img = img if img.shape[2] < 3: im_b = p_img im_g = p_img im_r = p_img p_img = np.concatenate((im_b, im_g, im_r), axis=2) if resize is not None: if isinstance(resize, float): _size = p_img.shape[:2] # p_img = np.array(Image.fromarray(p_img).resize((int(_size[0]*resize), int(_size[1]*resize)), Image.BILINEAR)) p_img = np.array(Image.fromarray(p_img).resize((int(_size[1]*resize), int(_size[0]*resize)), Image.BILINEAR)) elif isinstance(resize, tuple) or isinstance(resize, list): assert len(resize) == 2 p_img = np.array(Image.fromarray(p_img).resize((int(resize[0]), int(resize[1])), Image.BILINEAR)) p_img = normalize(p_img, self.image_mean, self.image_std) if crop_size is not None: p_img, margin = pad_image_to_shape(p_img, crop_size, cv2.BORDER_CONSTANT, value=0) p_img = p_img.transpose(2, 0, 1) return p_img, margin p_img = p_img.transpose(2, 0, 1) return p_img
def scale_process(self, img, ori_shape, crop_size, stride_rate, device=None): new_rows, new_cols, c = img.shape long_size = new_cols if new_cols > new_rows else new_rows if long_size <= crop_size: input_data, margin = self.process_image(img, crop_size) score = self.val_func_process(input_data, device) score = score[:, margin[0]:(score.shape[1] - margin[1]), margin[2]:(score.shape[2] - margin[3])] else: stride = int(np.ceil(crop_size * stride_rate)) img_pad, margin = pad_image_to_shape(img, crop_size, cv2.BORDER_CONSTANT, value=0) pad_rows = img_pad.shape[0] pad_cols = img_pad.shape[1] r_grid = int(np.ceil((pad_rows - crop_size) / stride)) + 1 c_grid = int(np.ceil((pad_cols - crop_size) / stride)) + 1 data_scale = torch.zeros(self.class_num, pad_rows, pad_cols).cuda( device) count_scale = torch.zeros(self.class_num, pad_rows, pad_cols).cuda( device) for grid_yidx in range(r_grid): for grid_xidx in range(c_grid): s_x = grid_xidx * stride s_y = grid_yidx * stride e_x = min(s_x + crop_size, pad_cols) e_y = min(s_y + crop_size, pad_rows) s_x = e_x - crop_size s_y = e_y - crop_size img_sub = img_pad[s_y:e_y, s_x: e_x, :] count_scale[:, s_y: e_y, s_x: e_x] += 1 input_data, tmargin = self.process_image(img_sub, crop_size) temp_score = self.val_func_process(input_data, device) temp_score = temp_score[:, tmargin[0]:(temp_score.shape[1] - tmargin[1]), tmargin[2]:(temp_score.shape[2] - tmargin[3])] data_scale[:, s_y: e_y, s_x: e_x] += temp_score # score = data_scale / count_scale score = data_scale score = score[:, margin[0]:(score.shape[1] - margin[1]), margin[2]:(score.shape[2] - margin[3])] score = score.permute(1, 2, 0) data_output = cv2.resize(score.cpu().numpy(), (ori_shape[1], ori_shape[0]), interpolation=cv2.INTER_LINEAR) return data_output
def process_image(self, img, crop_size=None): p_img = img if img.shape[2] < 3: im_b = p_img im_g = p_img im_r = p_img p_img = np.concatenate((im_b, im_g, im_r), axis=2) p_img = normalize(p_img, self.image_mean, self.image_std) if crop_size is not None: p_img, margin = pad_image_to_shape(p_img, crop_size, cv2.BORDER_CONSTANT, value=0) p_img = p_img.transpose(2, 0, 1) return p_img, margin p_img = p_img.transpose(2, 0, 1) return p_img