Example #1
0
    def ana_input(self,input_data):
        self.logger.info("in ana_input")
        flows = input_data['flows']
        for flow in flows:
            args = flow.split(' ')
            src = args[0]
            dst = args[1]
            try:
                port = int(args[2])
            except:
                port = None
            old = tools.str_to_list(args[3])
            new = tools.str_to_list(args[4])
            self.logger.info(new)
            trans_type = args[5]
            ratio = float(args[6])
            bw = int(args[7])
            flow  = FlowDesGlobal(src,dst,port,old,new,None,trans_type)
            flow.ratio = ratio
            flow.bw = bw

            self.logger.info(flow.new)
            self.logger.info(flow.trans_type)
            self.flows_to_schedule.update({src+dst+str(port):flow})
        self.logger.info(self.flows_to_schedule)
        self.logger.info("---------------------start!---------------------")
        self.logger.info(nowTime())
Example #2
0
def embedding(csv_path):
    train = pd.read_csv(csv_path)

    x_data = []

    for sentence in train.new_article.values:
        data = str_to_list(sentence)
        x_data.append(data)

    w2v_model = gensim.models.word2vec.Word2Vec(size=100,
                                                window=5,
                                                min_count=2)

    w2v_model.build_vocab(x_data)
    words = w2v_model.wv.vocab.keys()
    vocab_size = len(words)
    print("Vocab size", vocab_size)

    # Train Word Embeddings
    w2v_model.train(x_data, total_examples=len(x_data), epochs=100)

    return w2v_model
Example #3
0
import os
from model import base_model
from pathlib import Path
from tools import str_to_list, text2sequence, glove_word2vec
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger

DATA_PATH = Path("data")

max_len = 100
epochs = 10
batch_size = 128

train = pd.read_csv(DATA_PATH / "prep_news_train.csv")

word2vec = gensim.models.Word2Vec.load('./data/news_min0.embedding')
train_data = [ str_to_list(sentence) for sentence in train.new_article.values ]

train_X, vocab_size, tokenizer = text2sequence(train_data, max_len = max_len)
train_y = train['info']

word_index = tokenizer.word_index

embedding_matrix = np.zeros((vocab_size, max_len))

for word, index in word_index.items():
    if word in word2vec:
        embedding_vector = word2vec[word] 
        embedding_matrix[index] = embedding_vector 
    else:
        print("word2vec에 없는 단어입니다.")
        break
Example #4
0
import pandas as pd
import numpy as np
from pathlib import Path
from tools import str_to_list, text2sequence

DATA_PATH = Path("data")

train = pd.read_csv(DATA_PATH / "prep_news_train.csv")

x_data = []

for sentence in train.new_article.values:
    data = str_to_list(sentence)
    x_data.append(data)

train_X, vocab_size, tokenizer = text2sequence(x_data, max_len = 100)
train_y = train['info']

word_index = tokenizer.word_index

for i in word_index.items():
    print(i)
    break