def test_data_ann_rnn(feats, target, groups, ann, rnn):
    """
    mode = 'scores' or 'preds'
    take two ready trained models (cnn+rnn)
    test on input data and return acc+f1
    """
    if target.ndim == 2: target = np.argmax(target, 1)

    cnn_pred = ann.predict_classes(feats, 1024, verbose=0)

    cnn_acc = accuracy_score(target, cnn_pred)
    cnn_f1 = f1_score(target, cnn_pred, average='macro')

    seqlen = rnn.input_shape[1]
    features_seq, target_seq, groups_seq = tools.to_sequences(feats,
                                                              target,
                                                              seqlen=seqlen,
                                                              groups=groups)
    new_targ_seq = np.roll(target_seq, 4)
    rnn_pred = rnn.predict_classes(features_seq, 1024, verbose=0)
    rnn_acc = accuracy_score(new_targ_seq, rnn_pred)
    rnn_f1 = f1_score(new_targ_seq, rnn_pred, average='macro')
    confmat = confusion_matrix(new_targ_seq, rnn_pred)
    return [
        cnn_acc, cnn_f1, rnn_acc, rnn_f1, confmat,
        (rnn_pred, target_seq, groups_seq)
    ]
Example #2
0
 def feat_rnn(c=0):
     feats_eeg = scipy.stats.zscore(tools.feat_eeg(data[:,:,0]))
     feats_emg = scipy.stats.zscore(tools.feat_emg(data[:,:,1]))
     feats_eog = scipy.stats.zscore(tools.feat_eog(data[:,:,2]))
     feats_all = np.hstack([feats_eeg, feats_eog, feats_emg])
     feats_seq, targ_seq, groups_seq = tools.to_sequences(feats_all, target, groups=groups, seqlen=6, tolist=False)
     r = cv(feats_seq, targ_seq, groups_seq, models.pure_rnn_do, name = 'feat-rnn-all', stop_after=15, counter=c, plot=plot)
     with open('edfxresults_recurrent_feat.pkl', 'wb') as f:  pickle.dump(r, f)
def test_data_cnn_rnn(data,
                      target,
                      groups,
                      cnn,
                      rnn,
                      layername='fc1',
                      cropsize=2800,
                      verbose=1,
                      only_lstm=False):
    """
    mode = 'scores' or 'preds'
    take two ready trained models (cnn+rnn)
    test on input data and return acc+f1
    """
    if target.ndim == 2: target = np.argmax(target, 1)
    if cropsize != 0:
        diff = (data.shape[1] - cropsize) // 2
        data = data[:, diff:-diff:, :]

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        if only_lstm == False:
            cnn_pred = cnn.predict_classes(data, 1024, verbose=0)
        else:
            cnn_pred = target
        features = get_activations(cnn, data, 'fc1', verbose=verbose)

        cnn_acc = accuracy_score(target, cnn_pred)
        cnn_f1 = f1_score(target, cnn_pred, average='macro')

        seqlen = rnn.input_shape[1]
        features_seq, target_seq, groups_seq = tools.to_sequences(
            features, target, seqlen=seqlen, groups=groups)
        new_targ_seq = np.roll(target_seq, 4)
        rnn_pred = rnn.predict_classes(features_seq, 1024, verbose=0)
        rnn_acc = accuracy_score(new_targ_seq, rnn_pred)
        rnn_f1 = f1_score(new_targ_seq, rnn_pred, average='macro')
        confmat = confusion_matrix(new_targ_seq, rnn_pred)

    return [
        cnn_acc, cnn_f1, rnn_acc, rnn_f1, confmat,
        (rnn_pred, target_seq, groups_seq)
    ]
def cv(data,
       targets,
       groups,
       modfun,
       rnn=False,
       trans_tuple=None,
       epochs=250,
       folds=5,
       batch_size=256,
       val_batch_size=0,
       stop_after=0,
       name='',
       counter=0,
       plot=False,
       balanced=False,
       cropsize=0):
    """
    Crossvalidation routinge for an RNN using extracted features on a basemodel
    :param rnns: list with the following:
                 [rnnfun, [layernames], seqlen, batch_size]
    :param stop_after: stop after x epochs without f1-improvement. 0 for no stopping
    :param plot: True for plotting intermediate results and loss
    :param counter: prefix for saving files. can be any number.
    :param balanced: True if the generator should supply class-balanced batches
    :param cropsize: Size that is randomly cropped for training (data augmentation)
    :param ...: all others should be self-explanatory

    :returns results: dictionary with all RNN results
    """
    if val_batch_size == 0: val_batch_size = batch_size
    input_shape = list((np.array(data[0])).shape)  #train_data.shape
    if cropsize != 0: input_shape[0] = cropsize
    n_classes = targets.shape[1]

    if type(modfun) == str:
        wpath = modfun
        modfun = False

    gcv = GroupKFold(folds)
    dict_id = modfun.__name__ + name if modfun else 'cnn' + '_' + name
    results = {dict_id: []}
    if rnn:
        for lname in rnn['layers']:
            results[name + '_' + lname] = []

    for i, idxs in enumerate(gcv.split(groups, groups, groups)):
        K.clear_session()
        print('-----------------------------')
        print('Starting fold {}: {}-{} at {}'.format(
            i + 1, modfun.__name__ if modfun else 'cnn', name, time.ctime()))
        train_idx, test_idx = idxs
        sub_cv = GroupKFold(folds)
        train_sub_idx, val_idx = sub_cv.split(groups[train_idx],
                                              groups[train_idx],
                                              groups[train_idx]).__next__()
        val_idx = train_idx[val_idx]
        train_idx = train_idx[train_sub_idx]

        train_data = [data[i] for i in train_idx]
        train_target = targets[train_idx]
        train_groups = groups[train_idx]
        val_data = [data[i] for i in val_idx]
        val_target = targets[val_idx]
        val_groups = groups[val_idx]
        test_data = [data[i] for i in test_idx]
        test_target = targets[test_idx]
        test_groups = groups[test_idx]

        if modfun:
            model = modfun(input_shape, n_classes)
        else:
            fold = os.listdir(wpath)[i]
            model = keras.models.load_model(os.path.join(wpath, fold))

        modelname = model.name
        lname = modelname
        g_train = generator(train_data,
                            train_target,
                            batch_size * 2,
                            val=True,
                            cropsize=cropsize)
        g_val = generator(val_data,
                          val_target,
                          batch_size * 2,
                          val=True,
                          cropsize=cropsize)
        g_test = generator(test_data,
                           test_target,
                           batch_size * 2,
                           val=True,
                           cropsize=cropsize)

        if balanced:
            g = generator_balanced(train_data,
                                   train_target,
                                   batch_size,
                                   cropsize=cropsize)
            cb = Checkpoint_balanced(g_val,
                                     g,
                                     g_train,
                                     verbose=1,
                                     counter=counter,
                                     groups=val_groups,
                                     epochs_to_stop=stop_after,
                                     plot=plot,
                                     name='{}, {}, fold: {}'.format(
                                         name, lname, i))
        else:
            g = generator(train_data,
                          train_target,
                          batch_size,
                          random=True,
                          cropsize=cropsize)
            cb = Checkpoint_balanced(g_val,
                                     verbose=1,
                                     counter=counter,
                                     groups=val_groups,
                                     epochs_to_stop=stop_after,
                                     plot=plot,
                                     name='{}, {}, fold: {}'.format(
                                         name, lname, i))

        if modfun:
            model.fit_generator(g,
                                g.n_batches,
                                epochs=epochs,
                                callbacks=[cb],
                                max_queue_size=1,
                                verbose=0)

        y_pred = model.predict_generator(g_test,
                                         g_test.n_batches,
                                         max_queue_size=1)
        y_true = g_test.Y
        val_acc = cb.best_acc
        val_f1 = cb.best_f1
        test_acc = accuracy_score(np.argmax(y_true, 1), np.argmax(y_pred, 1))
        test_f1 = f1_score(np.argmax(y_true, 1),
                           np.argmax(y_pred, 1),
                           average="macro")
        confmat = confusion_matrix(np.argmax(y_true, 1), np.argmax(y_pred, 1))
        if plot:
            plt.subplot(2, 3, 5)
            plt.cla()
            tools.plot_results_per_patient(y_pred,
                                           y_true,
                                           test_groups,
                                           fname='')
            plt.title('Test Cases')
            plt.subplot(2, 3, 6)
            plt.cla()
            tools.plot_confusion_matrix('',
                                        confmat,
                                        ['W', 'S1', 'S2', 'SWS', 'REM'],
                                        cbar=False)
            plt.title('Test conf. Acc: {:.1f} F1: {:.1f}'.format(
                test_acc * 100, test_f1 * 100))
            plt.show()
            plt.pause(0.0001)
        results[dict_id].append(
            [cb.best_acc, cb.best_f1, test_acc, test_f1, confmat])

        if modfun:  # only save if we calculated the results
            try:
                model.save(
                    os.path.join(
                        '.', 'weights',
                        str(counter) + name + model.name + '_' + str(i) +
                        "_{:.3f}-{:.3f}".format(test_acc, test_f1)))
            except Exception as error:
                print("Got an error while saving model: {}".format(error))
        print(
            'ANN results: val acc/f1: {:.5f}/{:.5f}, test acc/f1: {:.5f}/{:.5f}'
            .format(cb.best_acc, cb.best_f1, test_acc, test_f1))
        ##########
        if trans_tuple is not None:
            trans_data, trans_target, trans_groups = trans_tuple
            g_trans = generator(trans_data,
                                trans_target,
                                batch_size * 2,
                                val=True,
                                cropsize=cropsize)
            y_trans = model.predict_generator(g_trans,
                                              g_trans.n_batches,
                                              max_queue_size=1)
            t_trans = g_trans.Y
            trans_acc = accuracy_score(np.argmax(t_trans, 1),
                                       np.argmax(y_trans, 1))
            trans_f1 = f1_score(np.argmax(t_trans, 1),
                                np.argmax(y_trans, 1),
                                average="macro")
            print('Transfer ANN results: acc/f1: {:.5f}/{:.5f}'.format(
                trans_acc, trans_f1))
        ##########
        if rnn:
            rnn_modelfun = rnn['model']
            layernames = rnn['layers']
            seq = rnn['seqlen']
            rnn_bs = rnn['batch_size']
            rnn_epochs = rnn['epochs']
            stopafter_rnn = rnn['stop_after']

            for lname in layernames:
                extracted = get_activations(model,
                                            train_data + val_data + test_data,
                                            lname,
                                            batch_size * 2,
                                            cropsize=cropsize)
                train_data_extracted = extracted[0:len(train_data)]
                val_data_extracted = extracted[len(train_data
                                                   ):len(train_data) +
                                               len(val_data)]
                test_data_extracted = extracted[len(train_data) +
                                                len(val_data):]
                assert (len(train_data) == len(train_data_extracted)) and (
                    len(test_data) == len(test_data_extracted)) and (
                        len(val_data) == len(val_data_extracted))
                train_data_seq, train_target_seq, train_groups_seq = tools.to_sequences(
                    train_data_extracted,
                    train_target,
                    groups=train_groups,
                    seqlen=seq)
                val_data_seq, val_target_seq, val_groups_seq = tools.to_sequences(
                    val_data_extracted,
                    val_target,
                    groups=val_groups,
                    seqlen=seq)
                test_data_seq, test_target_seq, test_groups_seq = tools.to_sequences(
                    test_data_extracted,
                    test_target,
                    groups=test_groups,
                    seqlen=seq)

                rnn_shape = list((np.array(train_data_seq[0])).shape)
                neurons = 100
                print('Starting RNN model with input from layer {}: {} at {}'.
                      format(lname, rnn_shape, time.ctime()))
                rnn_model = rnn_modelfun(rnn_shape,
                                         n_classes,
                                         layers=2,
                                         neurons=neurons,
                                         dropout=0.3)

                g_val = generator(val_data_seq,
                                  val_target_seq,
                                  rnn_bs * 2,
                                  val=True)
                g_test = generator(test_data_seq,
                                   test_target_seq,
                                   rnn_bs * 2,
                                   val=True)
                g_train = generator(train_data_seq,
                                    train_target_seq,
                                    batch_size * 2,
                                    val=True)
                if rnn['balanced']:
                    g = generator_balanced(train_data_seq, train_target_seq,
                                           rnn_bs)
                    cb = Checkpoint_balanced(g_val,
                                             g,
                                             g_train,
                                             verbose=1,
                                             counter=counter,
                                             groups=val_groups_seq,
                                             epochs_to_stop=stopafter_rnn,
                                             plot=plot,
                                             name='{}, {}, fold: {}'.format(
                                                 name, lname, i))
                else:
                    g = generator(train_data_seq, train_target_seq, rnn_bs)
                    cb = Checkpoint_balanced(g_val,
                                             verbose=1,
                                             counter=counter,
                                             groups=val_groups_seq,
                                             epochs_to_stop=stopafter_rnn,
                                             plot=plot,
                                             name='{}, {}, fold: {}'.format(
                                                 name, lname, i))

                rnn_model.fit_generator(g,
                                        g.n_batches,
                                        epochs=rnn_epochs,
                                        verbose=0,
                                        callbacks=[cb],
                                        max_queue_size=1)
                y_pred = rnn_model.predict_generator(g_test,
                                                     g_test.n_batches,
                                                     max_queue_size=1)
                y_true = g_test.Y
                val_acc = cb.best_acc
                val_f1 = cb.best_f1
                test_acc = accuracy_score(np.argmax(y_true, 1),
                                          np.argmax(y_pred, 1))
                test_f1 = f1_score(np.argmax(y_true, 1),
                                   np.argmax(y_pred, 1),
                                   average="macro")
                confmat = confusion_matrix(np.argmax(y_true, 1),
                                           np.argmax(y_pred, 1))
                try:
                    rnn_model.save(
                        os.path.join(
                            '.', 'weights',
                            str(counter) + name + lname + '_' + str(i) +
                            "_{:.3f}-{:.3f}".format(test_acc, test_f1)))
                except Exception as error:
                    print("Got an error while saving model: {}".format(error))
                if plot:
                    plt.subplot(2, 3, 5)
                    plt.cla()
                    tools.plot_results_per_patient(y_pred,
                                                   y_true,
                                                   test_groups_seq,
                                                   fname='')
                    plt.title('Test Cases')
                    plt.subplot(2, 3, 6)
                    plt.cla()
                    tools.plot_confusion_matrix(
                        '',
                        confmat, ['W', 'S1', 'S2', 'SWS', 'REM'],
                        cbar=False)
                    plt.title('Test conf. Acc: {:.1f} F1: {:.1f}'.format(
                        test_acc * 100, test_f1 * 100))
                    plt.show()
                    plt.pause(0.0001)
                results[name + '_' + lname].append(
                    [val_acc, val_f1, test_acc, test_f1, confmat])
                print(
                    'fold {}: val acc/f1: {:.5f}/{:.5f}, test acc/f1: {:.5f}/{:.5f}'
                    .format(i, cb.best_acc, cb.best_f1, test_acc, test_f1))
                ##########
                if trans_tuple is not None:
                    trans_data, trans_target, trans_groups = trans_tuple
                    extracted = get_activations(model,
                                                trans_data,
                                                lname,
                                                batch_size * 2,
                                                cropsize=cropsize)
                    trans_data, trans_target, trans_groups = tools.to_sequences(
                        extracted,
                        trans_target,
                        groups=trans_groups,
                        seqlen=seq)
                    g_trans = generator(trans_data,
                                        trans_target,
                                        batch_size * 2,
                                        val=True,
                                        cropsize=0)
                    y_trans = rnn_model.predict_generator(g_trans,
                                                          g_trans.n_batches,
                                                          max_queue_size=1)
                    t_trans = g_trans.Y
                    trans_acc = accuracy_score(np.argmax(t_trans, 1),
                                               np.argmax(y_trans, 1))
                    trans_f1 = f1_score(np.argmax(t_trans, 1),
                                        np.argmax(y_trans, 1),
                                        average="macro")
                    print(
                        'Transfer LSTM results: acc/f1: {:.5f}/{:.5f}'.format(
                            trans_acc, trans_f1))
                ##########
            save_dict = {
                '1 Number': counter,
                '2 Time': time.ctime(),
                '3 CV': '{}/{}.'.format(i + 1, folds),
                '5 Model': lname,
                '100 Comment': name,
                '10 Epochs': epochs,
                '11 Val acc': '{:.2f}'.format(val_acc * 100),
                '12 Val f1': '{:.2f}'.format(val_f1 * 100),
                '13 Test acc': '{:.2f}'.format(test_acc * 100),
                '14 Test f1': '{:.2f}'.format(test_f1 * 100),
                'Test Conf': str(confmat).replace('\n', '')
            }
            tools.save_results(save_dict=save_dict)

        try:
            with open('{}_{}_results.pkl'.format(counter, dict_id), 'wb') as f:
                pickle.dump(results, f)
        except Exception as e:
            print("Error while saving results: ", e)
        sys.stdout.flush()

    return results
def train_models_feat(data,
                      targets,
                      groups,
                      batch_size=512,
                      epochs=250,
                      epochs_to_stop=15):
    """
    trains a ann and rnn model with features
    the given data with 20% validation set and returns the two models
    """
    batch_size = 512
    input_shape = list((np.array(data[0])).shape)  #train_data.shape
    n_classes = targets.shape[1]
    train_idx, val_idx = GroupKFold(5).split(groups, groups, groups).__next__()
    train_data = [data[i] for i in train_idx]
    train_target = targets[train_idx]
    train_groups = groups[train_idx]
    val_data = [data[i] for i in val_idx]
    val_target = targets[val_idx]
    val_groups = groups[val_idx]
    model = models.ann(input_shape, n_classes)
    g_train = generator(train_data, train_target, batch_size, val=False)
    g_val = generator(val_data, val_target, batch_size, val=True)
    cb = Checkpoint_balanced(g_val,
                             verbose=1,
                             groups=val_groups,
                             epochs_to_stop=epochs_to_stop,
                             plot=True,
                             name='{}, {}'.format(model.name, 'testing'))
    model.fit_generator(g_train,
                        g_train.n_batches,
                        epochs=epochs,
                        callbacks=[cb],
                        max_queue_size=1,
                        verbose=0)
    val_acc = cb.best_acc
    val_f1 = cb.best_f1
    print('CNN Val acc: {:.1f}, Val F1: {:.1f}'.format(val_acc * 100,
                                                       val_f1 * 100))

    # LSTM training
    batch_size = 512
    n_classes = targets.shape[1]
    train_idx, val_idx = GroupKFold(5).split(groups, groups, groups).__next__()
    train_data = np.array([data[i] for i in train_idx])
    train_target = targets[train_idx]
    train_groups = groups[train_idx]
    val_data = np.array([data[i] for i in val_idx])
    val_target = targets[val_idx]
    val_groups = groups[val_idx]

    train_data_seq, train_target_seq, train_groups_seq = tools.to_sequences(
        train_data, train_target, groups=train_groups, seqlen=6)
    val_data_seq, val_target_seq, val_groups_seq = tools.to_sequences(
        val_data, val_target, groups=val_groups, seqlen=6)

    input_shape = list((np.array(train_data_seq[0])).shape)  #train_data.shape
    print(input_shape)
    rnn_model = models.pure_rnn_do(input_shape, n_classes)

    g_train = generator(train_data_seq,
                        train_target_seq,
                        batch_size,
                        val=False)
    g_val = generator(val_data_seq, val_target_seq, batch_size, val=True)
    cb = Checkpoint_balanced(g_val,
                             verbose=1,
                             groups=val_groups_seq,
                             epochs_to_stop=epochs_to_stop,
                             plot=True,
                             name='{}, {}'.format(rnn_model.name, 'testing'))
    rnn_model.fit_generator(g_train,
                            g_train.n_batches,
                            epochs=epochs,
                            callbacks=[cb],
                            max_queue_size=1,
                            verbose=0)
    val_acc = cb.best_acc
    val_f1 = cb.best_f1
    print('CNN Val acc: {:.1f}, Val F1: {:.1f}'.format(val_acc * 100,
                                                       val_f1 * 100))

    return model, rnn_model
def train_models(data,
                 targets,
                 groups,
                 model=None,
                 cropsize=2800,
                 batch_size=512,
                 epochs=250,
                 epochs_to_stop=15,
                 rnn_epochs_to_stop=15):
    """
    trains a cnn3adam_filter_l2 model with a LSTM on top on 
    the given data with 20% validation set and returns the two models
    """
    input_shape = list((np.array(data[0])).shape)  #train_data.shape
    input_shape[0] = cropsize
    n_classes = targets.shape[1]
    train_idx, val_idx = GroupKFold(5).split(groups, groups, groups).__next__()
    train_data = [data[i] for i in train_idx]
    train_target = targets[train_idx]
    train_groups = groups[train_idx]
    val_data = [data[i] for i in val_idx]
    val_target = targets[val_idx]
    val_groups = groups[val_idx]
    model = models.cnn3adam_filter_l2(input_shape,
                                      n_classes) if model is None else model(
                                          input_shape, n_classes)
    g_train = generator(train_data,
                        train_target,
                        batch_size,
                        val=False,
                        cropsize=cropsize)
    g_val = generator(val_data,
                      val_target,
                      batch_size,
                      val=True,
                      cropsize=cropsize)
    cb = Checkpoint_balanced(g_val,
                             verbose=1,
                             groups=val_groups,
                             epochs_to_stop=epochs_to_stop,
                             plot=True,
                             name='{}, {}'.format(model.name, 'testing'))
    model.fit_generator(g_train,
                        g_train.n_batches,
                        epochs=epochs,
                        callbacks=[cb],
                        max_queue_size=1,
                        verbose=0)
    val_acc = cb.best_acc
    val_f1 = cb.best_f1
    print('CNN Val acc: {:.1f}, Val F1: {:.1f}'.format(val_acc * 100,
                                                       val_f1 * 100))

    # LSTM training
    rnn_modelfun = models.pure_rnn_do
    lname = 'fc1'
    seq = 6
    rnn_epochs = epochs
    stopafter_rnn = rnn_epochs_to_stop
    features = get_activations(model,
                               train_data + val_data,
                               lname,
                               batch_size * 2,
                               cropsize=cropsize)
    train_data_extracted = features[0:len(train_data)]
    val_data_extracted = features[len(train_data):]
    assert (len(train_data)
            == len(train_data_extracted)) and (len(val_data)
                                               == len(val_data_extracted))
    train_data_seq, train_target_seq, train_groups_seq = tools.to_sequences(
        train_data_extracted, train_target, groups=train_groups, seqlen=seq)
    val_data_seq, val_target_seq, val_groups_seq = tools.to_sequences(
        val_data_extracted, val_target, groups=val_groups, seqlen=seq)
    rnn_shape = list((np.array(train_data_seq[0])).shape)
    neurons = int(np.sqrt(rnn_shape[-1]) * 4)
    rnn_model = rnn_modelfun(rnn_shape,
                             n_classes,
                             layers=2,
                             neurons=neurons,
                             dropout=0.3)
    print('Starting RNN model with input from layer fc1: {} at {}'.format(
        rnn_model.name, rnn_shape, time.ctime()))
    g_train = generator(train_data_seq,
                        train_target_seq,
                        batch_size,
                        val=False)
    g_val = generator(val_data_seq, val_target_seq, batch_size, val=True)
    cb = Checkpoint_balanced(g_val,
                             verbose=1,
                             groups=val_groups_seq,
                             epochs_to_stop=stopafter_rnn,
                             plot=True,
                             name='{}, {}'.format(rnn_model.name, 'fc1'))
    rnn_model.fit_generator(g_train,
                            g_train.n_batches,
                            epochs=rnn_epochs,
                            verbose=0,
                            callbacks=[cb],
                            max_queue_size=1)
    val_acc = cb.best_acc
    val_f1 = cb.best_f1
    print('LSTM Val acc: {:.1f}, Val F1: {:.1f}'.format(
        val_acc * 100, val_f1 * 100))

    return model, rnn_model
        target = np.delete(target, idx)
        target = keras.utils.to_categorical(target)
        return data, target, groups

    data, target, groups = load_data(dataset)

    #%%
    #s
    batch_size = 256
    epochs = 250
    name = dataset
    model = models.pure_rnn_do
    data = tools.get_all_features(data)
    feats = scipy.stats.zscore(data)
    feats_seq, target_seq, groups_seq = tools.to_sequences(data,
                                                           target,
                                                           groups=groups,
                                                           seqlen=6)
    results = keras_utils.cv(feats_seq,
                             target_seq,
                             groups_seq,
                             model,
                             name=name,
                             epochs=epochs,
                             folds=5,
                             batch_size=batch_size,
                             counter=counter,
                             plot=plot,
                             stop_after=15,
                             balanced=False)

    with open('results_dataset_feat_{}'.format(dataset), 'wb') as f:
Example #8
0
 def predict_rnn(self, features, modelpath = None, batch_size=256):
     if modelpath is not None: self.load_rnn_model(modelpath)
     feat_seq = tools.to_sequences(features, seqlen = self.rnn.input_shape[1], tolist=False)
     preds = self.rnn.predict(feat_seq, batch_size=batch_size)
     return preds