Example #1
0
def solveE(G, even_nodes, odd_nodes, h, pe, po):

    all_nodes = G.get_nodes()
    amount_nodes = len(all_nodes)
    if amount_nodes == 0 or pe <= 1 or h < 0:
        return []

    pe = min(amount_nodes, pe)
    po = min(amount_nodes, po)

    while True:
        Nh = [node for node in G.get_nodes() if node.get_priority() == h]
        ATRE, _ = atr(G, even_nodes, Nh, 0)

        if contain_all(G, ATRE, h):
            Nh_2 = [node for node in G.get_nodes() if node.get_priority() == h-2]
            Nh += Nh_2
            ATRE, _ = atr(G, even_nodes, Nh, 0)

        nodes, edges = G.remove_nodes(ATRE)

        H = Graph(nodes, edges)
        WO = solveO(H, even_nodes, odd_nodes, h-1, po//2, pe)
        ATRO, equal = atr(G, odd_nodes, WO, 1)
        nodes, edges = G.remove_nodes(ATRO)
        G = Graph(nodes, edges)

        if equal:
            # testing W0 == ATR0
            break

    #Nh = [node for node in G.get_nodes() if node.get_priority() == h]
    #ATRE, _ = atr(G, even_nodes, Nh, 0)
    #nodes, edges = G.remove_nodes(ATRE)
    #H = Graph(nodes, edges)
    WO = solveO(H, even_nodes, odd_nodes, h-1, po, pe)

    ATRO, equal = atr(G, odd_nodes, WO, 1)
    nodes, edges = G.remove_nodes(ATRO)
    G = Graph(nodes, edges)

    while not(equal):
        Nh = [node for node in G.get_nodes() if node.get_priority() == h]
        ATRE, _ = atr(G, even_nodes, Nh, 0)
        if contain_all(G, ATRE, h):
            Nh_2 = [node for node in G.get_nodes() if node.get_priority() == h-2]
            Nh += Nh_2
            ATRE, _ = atr(G, even_nodes, Nh, 0)

        nodes, edges = G.remove_nodes(ATRE)

        H = Graph(nodes, edges)
        WO = solveO(H, even_nodes, odd_nodes, h-1, po//2, pe)
        ATRO, equal = atr(G, odd_nodes, WO, 1)
        nodes, edges = G.remove_nodes(ATRO)
        G = Graph(nodes, edges)

    WE = G.get_nodes()
    return WE
Example #2
0
def solveO(G, even_nodes, odd_nodes, h, po, pe):

    all_nodes = G.get_nodes()
    if len(all_nodes) == 0 or po <= 1 or h < 0:
        return []

    while True:
        Nh = [node for node in G.get_nodes() if node.get_priority() == h]
        ATRO, _ = atr(G, odd_nodes, Nh, 1)

        if contain_all(G, ATRO, h):
            Nh_2 = [
                node for node in G.get_nodes() if node.get_priority() == h - 2
            ]
            Nh += Nh_2
            ATRO, _ = atr(G, odd_nodes, Nh, 1)

        nodes, edges = G.remove_nodes(ATRO)
        H = Graph(nodes, edges)
        WE = solveE(H, even_nodes, odd_nodes, h - 1, pe // 2, po)
        ATRE, equal = atr(G, even_nodes, WE, 0)
        nodes, edges = G.remove_nodes(ATRE)
        G = Graph(nodes, edges)

        if equal:
            # testing WE == ATRE
            break

    Nh = [node for node in G.get_nodes() if node.get_priority() == h]
    ATRO, _ = atr(G, odd_nodes, Nh, 1)
    nodes, edges = G.remove_nodes(ATRO)
    H = Graph(nodes, edges)

    WE = solveE(H, even_nodes, odd_nodes, h - 1, pe, po)
    ATRE, equal = atr(G, even_nodes, WE, 0)
    nodes, edges = G.remove_nodes(ATRE)
    G = Graph(nodes, edges)

    while not (equal):
        Nh = [node for node in G.get_nodes() if node.get_priority() == h]
        ATRO, _ = atr(G, odd_nodes, Nh, 1)

        if contain_all(G, ATRO, h):
            Nh_2 = [
                node for node in G.get_nodes() if node.get_priority() == h - 2
            ]
            Nh += Nh_2
            ATRO, _ = atr(G, odd_nodes, Nh, 1)

        nodes, edges = G.remove_nodes(ATRO)
        H = Graph(nodes, edges)
        WE = solveE(H, even_nodes, odd_nodes, h - 1, pe // 2, po)
        ATRE, equal = atr(G, even_nodes, WE, 0)
        nodes, edges = G.remove_nodes(ATRE)
        G = Graph(nodes, edges)

    WO = G.get_nodes()
    return WO
Example #3
0
def solveE(G, even_nodes, odd_nodes, h, pe, po):

    all_nodes = G.get_nodes()
    if len(all_nodes) == 0 or pe <= 1 or h < 0:
        return []

    while True:
        Nh = [node for node in G.get_nodes() if node.get_priority() == h]
        ATRE = atr(G, even_nodes, Nh, 0)
        nodes, edges = G.remove_nodes(ATRE)

        H = Graph(nodes, edges)
        WO = solveO(H, even_nodes, odd_nodes, h-1, po//2, pe)
        ATRO = atr(G, odd_nodes, WO, 1)
        nodes, edges = G.remove_nodes(ATRO)
        G = Graph(nodes, edges)

        if len(WO) == 0:
            # testing W0 emptiness
            break

    Nh = [node for node in G.get_nodes() if node.get_priority() == h]
    ATRE = atr(G, even_nodes, Nh, 0)
    nodes, edges = G.remove_nodes(ATRE)

    H = Graph(nodes, edges)
    WO = solveO(H, even_nodes, odd_nodes, h-1, po, pe)
    ATRO = atr(G, odd_nodes, WO, 1)
    nodes, edges = G.remove_nodes(ATRO)
    G = Graph(nodes, edges)

    while len(WO) != 0:
        Nh = [node for node in G.get_nodes() if node.get_priority() == h]
        ATRE = atr(G, even_nodes, Nh, 0)
        nodes, edges = G.remove_nodes(ATRE)

        H = Graph(nodes, edges)
        WO = solveO(H, even_nodes, odd_nodes, h-1, po//2, pe)
        ATRO = atr(G, odd_nodes, WO, 1)
        nodes, edges = G.remove_nodes(ATRO)
        G = Graph(nodes, edges)


    WE = G.get_nodes()
    return WE
Example #4
0
def solveE(G, even_nodes, odd_nodes, h, pe, po):

    all_nodes = G.get_nodes()
    if len(all_nodes) == 0 or pe <= 1 or h < 0:
        return []

    while True:
        Nh = [node for node in G.get_nodes() if node.get_priority() == h]
        ATRE, equal = atr(G, even_nodes, Nh, 0)
        nodes, edges = G.remove_nodes(ATRE)

        H = Graph(nodes, edges)
        WO = solveO(H, even_nodes, odd_nodes, h - 1, po // 2, pe)
        ATRO, equal = atr(G, odd_nodes, WO, 1)
        nodes, edges = G.remove_nodes(ATRO)
        G = Graph(nodes, edges)

        if equal:
            # testing W0 == ATR0
            break

    Nh = [node for node in G.get_nodes() if node.get_priority() == h]
    ATRE, _ = atr(G, even_nodes, Nh, 0)
    nodes, edges = G.remove_nodes(ATRE)

    H = Graph(nodes, edges)
    WO = solveO(H, even_nodes, odd_nodes, h - 1, po, pe)
    ATRO, equal = atr(G, odd_nodes, WO, 1)
    nodes, edges = G.remove_nodes(ATRO)
    G = Graph(nodes, edges)

    while not (equal):
        Nh = [node for node in G.get_nodes() if node.get_priority() == h]
        ATRE, _ = atr(G, even_nodes, Nh, 0)
        nodes, edges = G.remove_nodes(ATRE)

        H = Graph(nodes, edges)
        WO = solveO(H, even_nodes, odd_nodes, h - 1, po // 2, pe)
        ATRO, equal = atr(G, odd_nodes, WO, 1)
        nodes, edges = G.remove_nodes(ATRO)
        G = Graph(nodes, edges)

    WE = G.get_nodes()
    return WE