Example #1
0
def test_curl_is_equal_to_curl_computed_with_grad_function():
    N = 128
    L = 2.0
    kappa = 0.0
    gamma = 1.0
    v = np.random.random((2, N, N))
    # print(np.shape(v))
    st = ScalarTool(N, L)
    vt = VectorTool(N, L)
    v = vt.div_free_proj(v)
    v = vt.dealias(v)
    c = st.grad(v[1])[0] - st.grad(v[0])[1]
    assert np.allclose(c, vt.curl(v))
Example #2
0
def test_l2norm_squared_of_curl_of_vector_is_spatial_integral_of_neg_vector_times_lap_vector(
):
    N = 128
    L = 2.0
    kappa = 0.0
    gamma = 1.0
    v = np.random.random((2, N, N))
    # print(np.shape(v))
    st = ScalarTool(N, L)
    vt = VectorTool(N, L)
    v = vt.div_free_proj(v)
    v = vt.dealias(v)
    curl = vt.curl(v)
    a = st.l2norm(curl)**2.
    b = st.sint(np.sum(-vt.lap(v) * v, 0))
    assert np.allclose(a, b)