Example #1
0
    def __str__(self):
        if self.has_complex_coeffs():
            return ' + '.join(
                str(c) + '×X^' + str(i) for i, c in enumerate(self._coeffs))
        terms = []
        signs = []
        for i, c in enumerate(self):
            term = ''
            if c == 0:
                continue
            if c > 0:
                signs += ['+']
            elif c < 0:
                signs += ['-']
            else:
                signs += ['']

            if c not in (1, -1) or i == 0:
                term += str(abs(c))
            if i >= 1:
                term += 'x'
            if i >= 2:
                term += '^' + str(i)
            if term != '':
                terms += [term]
        terms, signs = list(reversed(terms)), list(reversed(signs))
        first_sign, signs = signs[0], (' ' + s + ' ' for s in signs[1:])
        if first_sign == '+':
            first_sign = ''
        return first_sign + ''.join(toolz.interleave([terms, signs]))
def retrieve_newsgroup_articles(max_documents=-1):
    # List of documents
    documents = []

    news_groups_all = fetch_20newsgroups(subset='all')

    train_news_groups = fetch_20newsgroups(subset='train')
    train_news_groups_zipped = zip(train_news_groups.target,
                                   train_news_groups.data,
                                   train_news_groups.filenames)
    test_news_groups = fetch_20newsgroups(subset='test')
    test_news_groups_zipped = zip(test_news_groups.target,
                                  test_news_groups.data,
                                  test_news_groups.filenames)

    news_groups = interleave(
        [train_news_groups_zipped, test_news_groups_zipped])
    for news_group_id, article, file_name in news_groups:
        if max_documents > -1 and len(documents) >= max_documents:
            return documents

        words = tokenize(article)
        document = {
            'words': words,
            'categories': [news_groups_all.target_names[news_group_id]],
            'is_training_example': True if 'train/' in file_name else False,
            'is_test_example': True if 'test/' in file_name else False,
            'words_filtered': do_filter_words(words),
            'file_id': file_name
        }
        if len(document['words_filtered']) < 30:
            continue
        documents.append(document)

    return documents
    def __init__(self, activations, dims, bn_init=None, **kwargs):
        if bn_init is None:
            bn_init = IsotropicGaussian(0.1)

        self.bn_init = bn_init
        self.activations = activations
        self.batch_normnalizations = [
            BatchNormalization(name='bn_{}'.format(i),
                               beta_init=bn_init,
                               gamma_init=bn_init)
            for i in range(len(activations))
        ]
        self.linear_transformations = [
            Linear(name='linear_{}'.format(i)) for i in range(len(activations))
        ]

        # Interleave the transformations and activations
        application_methods = []
        for entity in interleave([
                self.linear_transformations, self.batch_normnalizations,
                activations
        ]):
            if entity is None:
                continue
            if isinstance(entity, Brick):
                application_methods.append(entity.apply)
            else:
                application_methods.append(entity)
        if not dims:
            dims = [None] * (len(activations) + 1)
        self.dims = dims
        super(BatchNormalizedMLP, self).__init__(application_methods, **kwargs)
    def __init__(self, input_dim0, input_dim1, other_dims, activations,
                 batch_size, **kwargs):

        self.activations = activations
        self.input_dim0 = input_dim0
        self.input_dim1 = input_dim1
        self.other_dims = other_dims
        self.batch_size = batch_size
        self.linear_transformations = []
        self.linear_transformations.append(
            TensorLinear(input_dim0=self.input_dim0,
                         input_dim1=self.input_dim1,
                         output_dim=self.other_dims[0],
                         batch_size=batch_size))
        self.linear_transformations.extend([
            Linear(name='linear_{}'.format(i),
                   input_dim=other_dims[i],
                   output_dim=other_dims[i + 1])
            for i in range(len(other_dims) - 1)
        ])
        self.linear_transformations.append(
            TensorLinear_inverse(input_dim=self.other_dims[-1],
                                 output_dim0=self.input_dim0,
                                 output_dim1=self.input_dim1,
                                 batch_size=batch_size))
        application_methods = []
        for entity in interleave([self.linear_transformations, activations]):
            if entity is None:
                continue
            if isinstance(entity, Brick):
                application_methods.append(entity.apply)
            else:
                application_methods.append(entity)
        super(tabula_NADE, self).__init__(application_methods, **kwargs)
 def __init__(self, input_dim0, input_dim1, other_dims, activations, batch_size,
              **kwargs):
     
     self.activations = activations
     self.input_dim0 = input_dim0
     self.input_dim1 = input_dim1
     self.other_dims = other_dims
     self.batch_size = batch_size
     self.linear_transformations = []
     self.linear_transformations.append(TensorLinear(input_dim0=self.input_dim0,
                                                     input_dim1=self.input_dim1,
                                                     output_dim=self.other_dims[0],
                                                     batch_size=batch_size)
                                        )
     self.linear_transformations.extend([Linear(name='linear_{}'.format(i),
                                                input_dim=other_dims[i],
                                                output_dim=other_dims[i + 1])
                                         for i in range(len(other_dims) - 1)])
     self.linear_transformations.append(TensorLinear_inverse(input_dim=self.other_dims[-1],
                                                             output_dim0=self.input_dim0,
                                                             output_dim1=self.input_dim1,
                                                             batch_size=batch_size))
     application_methods = []
     for entity in interleave([self.linear_transformations, activations]):
         if entity is None:
             continue
         if isinstance(entity, Brick):
             application_methods.append(entity.apply)
         else:
             application_methods.append(entity)
     super(tabula_NADE, self).__init__(application_methods, **kwargs)
def __getattr__(name):
    # Highly obsfuscated code. This is the puzzle. If you solve it you can use
    # forbidden powers in production code. You can, but you shouldn't. Really,
    # don't do it!
    import toolz
    import inspect
    import os

    if name != "forbidden_powers":
        raise AttributeError(name)

    evil = os.environ.get("EVIL", "").lower() == "true"

    try:
        fn = globals()["_forbidden_powers"]
    except KeyError:
        pass
    else:
        if evil:
            data = inspect.getsource(fn)
            print("Forbidden power spells")
            print(f"SPELL_1 = {data[::2]!r}")
            print(f"SPELL_2 = {data[1::2]!r}")
            print("\n\n")
        return fn

    code = "".join(toolz.interleave([SPELL_1, SPELL_2]))
    if evil:
        print("Forbidden_powers code\n\n")
        print(code)
    exec(code, globals())
    return globals()["_forbidden_powers"]
Example #7
0
  def getCubeIndex(self, ch, listoftimestamps, listofidxs, resolution, neariso=False):
    """Retrieve the indexes of inserted cubes"""

    index_store = self.getIndexStore()
    index_store_temp = index_store+'&temp'
    index_list_size = len(listofidxs)*len(listoftimestamps)
    
    try:
      index_list = list(interleave([[1]*index_list_size, self.getIndexList(ch, listoftimestamps, listofidxs, resolution, neariso)]))
      self.client.zadd(index_store_temp, *index_list)
      
      # if listoftimestamps:
        # # TODO KL Test this
        # index_list = list(interleave([[1]*len(listofidxs), self.getIndexList(ch, resolution, listofidxs)]))
        # self.client.zadd(index_store_temp, *index_list)
      # else:
        # index_list = list(interleave([[1]*len(listofidxs), self.getIndexList(ch, resolution, listofidxs)]))
        # self.client.zadd(index_store_temp, *index_list)
      # self.client.zinterstore(index_store_temp, [index_store_temp, index_store] )
      self.client.zunionstore(index_store_temp, {index_store_temp : 1, index_store : 0}, 'MIN')
      ids_to_fetch = self.client.zrevrangebyscore(index_store_temp, '+inf', 1)
      self.client.delete(index_store_temp)
    except Exception, e:
      logger.error("Error retrieving cube indexes into the database. {}".format(e))
      raise SpatialDBError("Error retrieving cube indexes into the database. {}".format(e))
Example #8
0
    def putCubeIndex(self,
                     ch,
                     listoftimestamps,
                     listofidxs,
                     resolution,
                     neariso=False):
        """Add the listofidxs to the store"""

        try:
            cachedtime_list = [time.time()
                               ] * len(listofidxs) * len(listoftimestamps)
            index_list = list(
                interleave([
                    cachedtime_list,
                    self.getIndexList(ch, listoftimestamps, listofidxs,
                                      resolution, neariso)
                ]))
            self.client.zadd(self.getIndexStore(), *index_list)
            # if listoftimestamps:
            # # TODO KL Test this
            # cachedtime_list = [time.time()]*len(listofidxs)
            # index_list = list(interleave([cachedtime_list, self.getIndexList(ch, resolution, listofidxs)]))
            # self.client.zadd(self.getIndexStore(), *index_list)
            # else:
            # cachedtime_list = [time.time()]*len(listofidxs)
            # index_list = list(interleave([cachedtime_list, self.getIndexList(ch, resolution, listofidxs)]))
            # self.client.zadd(self.getIndexStore(), *index_list)
        except Exception, e:
            logger.error(
                "Error inserting cube indexes into the database. {}".format(e))
            raise SpatialDBError(
                "Error inserting cube indexes into the database. {}".format(e))
def retrieve_reuters_documents(max_documents=-1, filter_words=True):
    # List of documents
    documents = []

    training_files = [
        file_id for file_id in reuters.fileids() if 'training/' in file_id
    ]
    test_files = [
        file_id for file_id in reuters.fileids() if 'test/' in file_id
    ]

    for file_id in interleave([training_files, test_files]):
        if max_documents > -1 and len(documents) >= max_documents:
            return documents

        words = list(reuters.words(fileids=file_id))
        words_filtered = do_filter_words(words)
        document = {
            'words': words,
            'title': reuters.raw(fileids=file_id).split("\n")[0],
            'categories': reuters.categories(fileids=file_id),
            'is_training_example': True if 'training/' in file_id else False,
            'is_test_example': True if 'test/' in file_id else False,
            'words_filtered': words_filtered if filter_words else words,
            'file_id': file_id
        }
        if len(words_filtered) < 30:
            continue
        documents.append(document)

    return documents
Example #10
0
 def apply(self, input_):
     out = input_
     for brick in interleave([self.linear_transformations, self.batch_norms, self.activations]):
         if brick is None:
             continue
         if isinstance(brick, Brick):
             out = brick.apply(out)
     return out
Example #11
0
 def apply(self, input_):
     out = input_
     for brick in interleave(
         [self.linear_transformations, self.batch_norms, self.activations]):
         if brick is None:
             continue
         if isinstance(brick, Brick):
             out = brick.apply(out)
     return out
def compute_stats(df):
    means = df.groupby(["model"],
                       sort=False).mean().add_prefix("Average ").reset_index()
    std = df.groupby(["model"],
                     sort=False).std().add_suffix(" (STD)").reset_index()
    model = means["model"]
    means = means.drop(columns=["model"])
    std = std.drop(columns=["model"])
    stats = pd.concat([means, std], axis=1)[list(interleave([means, std]))]
    stats.insert(0, 'model', model)
    return stats
def encode(message, rails):
    encoded = []

    for i in range(rails):
        if i == 0 or i == rails - 1:
            encoded.append(message[i::2 * rails - 2])
        else:
            l1 = message[i::2 * rails - 2]
            l2 = message[2 * rails - (i + 2)::2 * rails - 2]
            encoded.append("".join(toolz.interleave([l1, l2])))

    return "".join(encoded)
Example #14
0
    def __init__(self, activations, dims, **kwargs):
        self.activations = activations

        self.linear_transformations = [Linear(name='linear_{}'.format(i))
                                       for i in range(len(activations))]
        # Interleave the transformations and activations
        application_methods = [brick.apply for brick in interleave(
            [self.linear_transformations, activations]) if brick is not None]
        if not dims:
            dims = [None] * (len(activations) + 1)
        self.dims = dims
        super(MLP, self).__init__(application_methods, **kwargs)
Example #15
0
def insert(arr, obj, values, axis):
    # axis is a required argument here to avoid needing to deal with the numpy
    # default case (which reshapes the array to make it flat)
    if not -arr.ndim <= axis < arr.ndim:
        raise IndexError('axis %r is out of bounds for an array of dimension '
                         '%s' % (axis, arr.ndim))
    if axis < 0:
        axis += arr.ndim

    if isinstance(obj, slice):
        obj = np.arange(*obj.indices(arr.shape[axis]))
    obj = np.asarray(obj)
    scalar_obj = obj.ndim == 0
    if scalar_obj:
        obj = np.atleast_1d(obj)

    obj = np.where(obj < 0, obj + arr.shape[axis], obj)
    if (np.diff(obj) < 0).any():
        raise NotImplementedError(
            'da.insert only implemented for monotonic ``obj`` argument')

    split_arr = split_at_breaks(arr, np.unique(obj), axis)

    if getattr(values, 'ndim', 0) == 0:
        # we need to turn values into a dask array
        name = 'values-' + tokenize(values)
        dtype = getattr(values, 'dtype', type(values))
        values = Array({(name,): values}, name, chunks=(), dtype=dtype)

        values_shape = tuple(len(obj) if axis == n else s
                             for n, s in enumerate(arr.shape))
        values = broadcast_to(values, values_shape)
    elif scalar_obj:
        values = values[(slice(None),) * axis + (None,)]

    values_chunks = tuple(values_bd if axis == n else arr_bd
                          for n, (arr_bd, values_bd)
                          in enumerate(zip(arr.chunks,
                                           values.chunks)))
    values = values.rechunk(values_chunks)

    counts = np.bincount(obj)[:-1]
    values_breaks = np.cumsum(counts[counts > 0])
    split_values = split_at_breaks(values, values_breaks, axis)

    interleaved = list(interleave([split_arr, split_values]))
    interleaved = [i for i in interleaved if i.nbytes]
    return concatenate(interleaved, axis=axis)
Example #16
0
def insert(arr, obj, values, axis):
    # axis is a required argument here to avoid needing to deal with the numpy
    # default case (which reshapes the array to make it flat)
    if not -arr.ndim <= axis < arr.ndim:
        raise IndexError('axis %r is out of bounds for an array of dimension '
                         '%s' % (axis, arr.ndim))
    if axis < 0:
        axis += arr.ndim

    if isinstance(obj, slice):
        obj = np.arange(*obj.indices(arr.shape[axis]))
    obj = np.asarray(obj)
    scalar_obj = obj.ndim == 0
    if scalar_obj:
        obj = np.atleast_1d(obj)

    obj = np.where(obj < 0, obj + arr.shape[axis], obj)
    if (np.diff(obj) < 0).any():
        raise NotImplementedError(
            'da.insert only implemented for monotonic ``obj`` argument')

    split_arr = split_at_breaks(arr, np.unique(obj), axis)

    if getattr(values, 'ndim', 0) == 0:
        # we need to turn values into a dask array
        name = 'values-' + tokenize(values)
        dtype = getattr(values, 'dtype', type(values))
        values = Array({(name,): values}, name, chunks=(), dtype=dtype)

        values_shape = tuple(len(obj) if axis == n else s
                             for n, s in enumerate(arr.shape))
        values = broadcast_to(values, values_shape)
    elif scalar_obj:
        values = values[(slice(None),) * axis + (None,)]

    values_chunks = tuple(values_bd if axis == n else arr_bd
                          for n, (arr_bd, values_bd)
                          in enumerate(zip(arr.chunks,
                                           values.chunks)))
    values = values.rechunk(values_chunks)

    counts = np.bincount(obj)[:-1]
    values_breaks = np.cumsum(counts[counts > 0])
    split_values = split_at_breaks(values, values_breaks, axis)

    interleaved = list(interleave([split_arr, split_values]))
    interleaved = [i for i in interleaved if i.nbytes]
    return concatenate(interleaved, axis=axis)
Example #17
0
    def compile(self):
        self._extract_subqueries()

        extracted = self.format_subqueries()

        buf = []

        if extracted:
            buf.append(f'WITH {extracted}')

        buf.extend(
            toolz.interleave((
                map(self.format_relation, self.tables),
                self._get_keyword_list(),
            )))
        return '\n'.join(buf)
Example #18
0
 def __init__(self, activations, dims, prototype=None, **kwargs):
     self.activations = activations
     self.prototype = Linear() if prototype is None else prototype
     self.linear_transformations = []
     for i in range(len(activations)):
         linear = copy.deepcopy(self.prototype)
         name = self.prototype.__class__.__name__.lower()
         linear.name = '{}_{}'.format(name, i)
         self.linear_transformations.append(linear)
     if not dims:
         dims = [None] * (len(activations) + 1)
     self.dims = dims
     # Interleave the transformations and activations
     applications = [a for a in interleave([self.linear_transformations,
                                            activations]) if a is not None]
     super(MLP, self).__init__(applications, **kwargs)
Example #19
0
def solve_matrix(lhs_mat, rhs_mat):
    df = toolz.merge(lhs_mat, rhs_mat)
    df = pd.DataFrame(df)
    df[list(rhs_mat.keys())] *= -1
    # df.replace("nan", 0)
    df = df.fillna(value=0)
    matrix = sp.Matrix(df.values.astype(int))
    consts = matrix.nullspace()

    headings = list(df.columns)
    consts = consts[0].values()
    consts = [float(x) for x in consts]
    consts = [Fraction(x).limit_denominator() for x in consts]

    solns = list(toolz.interleave([headings, consts]))
    solns = list(toolz.partition(2, solns))
    return solns
def solve_matrix(lhs_mat, rhs_mat):
    df = toolz.merge(lhs_mat, rhs_mat)
    df = pd.DataFrame(df)
    df[list(rhs_mat.keys())] *= -1
    # df.replace("nan", 0)
    df = df.fillna(value=0)
    matrix = sp.Matrix(df.values.astype(int))
    consts = matrix.nullspace()

    headings = list(df.columns)
    consts = consts[0].values()
    consts = [float(x) for x in consts]
    consts = [Fraction(x).limit_denominator() for x in consts]

    solns = list(toolz.interleave([headings, consts]))
    solns = list(toolz.partition(2, solns))
    return solns
Example #21
0
def adjust_links(s: str):
    matches = list(link_pattern.finditer(s))
    if len(matches) == 0:
        return s

    abs_save_paths = [
        Path(load_config().save_path, 'assets', m.group(1)) for m in matches
    ]

    first_segment = s[:matches[0].start(1)]
    segments = [
        s[m1.end(1):m2.start(1)] for m1, m2 in t.sliding_window(2, matches)
    ]
    last_segment = s[matches[-1].end(1):]
    return "".join(
        t.interleave([[first_segment] + segments,
                      map(str, abs_save_paths)])) + last_segment
Example #22
0
    def __init__(self, activations, dims, **kwargs):
        self.activations = activations

        self.linear_transformations = [Linear(name='linear_{}'.format(i))
                                       for i in range(len(activations))]
        # Interleave the transformations and activations
        application_methods = []
        for entity in interleave([self.linear_transformations, activations]):
            if entity is None:
                continue
            if isinstance(entity, Brick):
                application_methods.append(entity.apply)
            else:
                application_methods.append(entity)
        if not dims:
            dims = [None] * (len(activations) + 1)
        self.dims = dims
        super(MLP, self).__init__(application_methods, **kwargs)
Example #23
0
 def __init__(self, activations, dims, prototype=None, **kwargs):
     self.activations = activations
     self.prototype = Linear() if prototype is None else prototype
     self.linear_transformations = []
     for i in range(len(activations)):
         linear = copy.deepcopy(self.prototype)
         name = self.prototype.__class__.__name__.lower()
         linear.name = '{}_{}'.format(name, i)
         self.linear_transformations.append(linear)
     if not dims:
         dims = [None] * (len(activations) + 1)
     self.dims = dims
     # Interleave the transformations and activations
     applications = [
         a for a in interleave([self.linear_transformations, activations])
         if a is not None
     ]
     super(MLP, self).__init__(applications, **kwargs)
Example #24
0
    def __init__(self, activations, dims, **kwargs):
        self.activations = activations

        self.linear_transformations = [Linear(name='linear_{}'.format(i))
                                       for i in range(len(activations))]
        # Interleave the transformations and activations
        application_methods = []
        for entity in interleave([self.linear_transformations, activations]):
            if entity is None:
                continue
            if isinstance(entity, Brick):
                application_methods.append(entity.apply)
            else:
                application_methods.append(entity)
        if not dims:
            dims = [None] * (len(activations) + 1)
        self.dims = dims
        super(MLP, self).__init__(application_methods, **kwargs)
Example #25
0
 def putCubeIndex(self, ch, listoftimestamps, listofidxs, resolution, neariso=False):
   """Add the listofidxs to the store"""
   
   try: 
     cachedtime_list = [time.time()]*len(listofidxs)*len(listoftimestamps)
     index_list = list(interleave([cachedtime_list, self.getIndexList(ch, listoftimestamps, listofidxs, resolution, neariso)]))
     self.client.zadd(self.getIndexStore(), *index_list)
     # if listoftimestamps:
       # # TODO KL Test this
       # cachedtime_list = [time.time()]*len(listofidxs)
       # index_list = list(interleave([cachedtime_list, self.getIndexList(ch, resolution, listofidxs)]))
       # self.client.zadd(self.getIndexStore(), *index_list)
     # else:
       # cachedtime_list = [time.time()]*len(listofidxs)
       # index_list = list(interleave([cachedtime_list, self.getIndexList(ch, resolution, listofidxs)]))
       # self.client.zadd(self.getIndexStore(), *index_list)
   except Exception, e:
     logger.error("Error inserting cube indexes into the database. {}".format(e))
     raise SpatialDBError("Error inserting cube indexes into the database. {}".format(e))
Example #26
0
    def getCubeIndex(self,
                     ch,
                     listoftimestamps,
                     listofidxs,
                     resolution,
                     neariso=False):
        """Retrieve the indexes of inserted cubes"""

        index_store = self.getIndexStore()
        index_store_temp = index_store + '&temp'
        index_list_size = len(listofidxs) * len(listoftimestamps)

        try:
            index_list = list(
                interleave([[1] * index_list_size,
                            self.getIndexList(ch, listoftimestamps, listofidxs,
                                              resolution, neariso)]))
            self.client.zadd(index_store_temp, *index_list)

            # if listoftimestamps:
            # # TODO KL Test this
            # index_list = list(interleave([[1]*len(listofidxs), self.getIndexList(ch, resolution, listofidxs)]))
            # self.client.zadd(index_store_temp, *index_list)
            # else:
            # index_list = list(interleave([[1]*len(listofidxs), self.getIndexList(ch, resolution, listofidxs)]))
            # self.client.zadd(index_store_temp, *index_list)
            # self.client.zinterstore(index_store_temp, [index_store_temp, index_store] )
            self.client.zunionstore(index_store_temp, {
                index_store_temp: 1,
                index_store: 0
            }, 'MIN')
            ids_to_fetch = self.client.zrevrangebyscore(
                index_store_temp, '+inf', 1)
            self.client.delete(index_store_temp)
        except Exception, e:
            logger.error(
                "Error retrieving cube indexes into the database. {}".format(
                    e))
            raise SpatialDBError(
                "Error retrieving cube indexes into the database. {}".format(
                    e))
Example #27
0
 def __init__(self, activations, dims, prototype=None, **kwargs):
     self.activations = activations
     self.prototype = Linear() if prototype is None else prototype
     self.linear_transformations = []
     for i in range(len(activations)):
         linear = copy.deepcopy(self.prototype)
         name = self.prototype.__class__.__name__.lower()
         linear.name = '{}_{}'.format(name, i)
         self.linear_transformations.append(linear)
     # Interleave the transformations and activations
     application_methods = []
     for entity in interleave([self.linear_transformations, activations]):
         if entity is None:
             continue
         if isinstance(entity, Brick):
             application_methods.append(entity.apply)
         else:
             application_methods.append(entity)
     if not dims:
         dims = [None] * (len(activations) + 1)
     self.dims = dims
     super(MLP, self).__init__(application_methods, **kwargs)
Example #28
0
 def __init__(self, activations, dims, prototype=None, **kwargs):
     self.activations = activations
     self.prototype = Linear() if prototype is None else prototype
     self.linear_transformations = []
     for i in range(len(activations)):
         linear = copy.deepcopy(self.prototype)
         name = self.prototype.__class__.__name__.lower()
         linear.name = '{}_{}'.format(name, i)
         self.linear_transformations.append(linear)
     # Interleave the transformations and activations
     application_methods = []
     for entity in interleave([self.linear_transformations, activations]):
         if entity is None:
             continue
         if isinstance(entity, Brick):
             application_methods.append(entity.apply)
         else:
             application_methods.append(entity)
     if not dims:
         dims = [None] * (len(activations) + 1)
     self.dims = dims
     super(MLP, self).__init__(application_methods, **kwargs)
def retrieve_imdb_movie_reviews(max_documents=-1):
    # List of documents
    documents = []
    file_names = interleave([
        list_files('/data-sets/aclImdb/test/neg'),
        list_files('/data-sets/aclImdb/test/pos'),
        list_files('/data-sets/aclImdb/train/neg'),
        list_files('/data-sets/aclImdb/train/pos'),
        list_files('/data-sets/aclImdb/train/unsup')
    ])

    for file_name in file_names:
        if max_documents > -1 and len(documents) >= max_documents:
            return documents

        text_file = open(file_name, "r", encoding='utf8')
        lines = text_file.readlines()
        text_file.close()
        words = tokenize("\n".join(lines))
        document = {
            'words':
            words,
            'categories': ['neg'] if '/neg/' in file_name else
            ['pos'] if '/pos/' in file_name else [],
            'is_training_example':
            True if '/train/' in file_name else False,
            'is_test_example':
            True if '/test/' in file_name else False,
            'words_filtered':
            do_filter_words(words),
            'file_id':
            file_name
        }
        if len(document['words_filtered']) < 30:
            continue
        documents.append(document)

    return documents
Example #30
0
        question.possible_answers
    )


def add_last_answer(question: Question, text: str) -> Question:
    return Question(
        question.id,
        question.text,
        question.possible_answers + [Answer(question.id, text)]
    )


def is_appropriate(question: Question) -> bool:
    return question.text.startswith('bb')


business_rules_questions = [
    Question(10, 'bizness?', [Answer(10, 'biz'), Answer(10, 'ness')]),
    Question(20, 'nezbis?', [Answer(20, 'nez'), Answer(20, 'bis')])
    ]


questions_to_ask = filter(
    is_appropriate,
    toolz.interleave((
        toolz.take(1, business_rules_questions),
        map(toolz.compose(reformulate, partial(add_last_answer, text='non')),
            algorithmic_generated_questions)
       )))

print(list(questions_to_ask))
def doubleEveryOther(ints: PVector[int]) -> PVector[int]:
    return pvector(
        interleave([
            ints[::-1][0::2],
            pvector(map(lambda x: x * 2, ints[::-1][1::2]))
        ]))
Example #32
0
    def ldisj_seq_goal(S):
        nonlocal goals

        goals, _goals = tee(goals)

        yield from interleave(g(S) for g in _goals)
#### Two dataframes
df_delays = df[[ 'start_delay_ref', 'ones', 'duration_delay']]
df_delays.columns=['start', 'index' , 'duration']
df_delays['condition']='delay'

df_inter_delays = df[[ 'starts_inter_delay', 'zeros', 'durations_inter']]
df_inter_delays.columns=['start', 'index' , 'duration']
df_inter_delays['condition']='baseline';

##### Interleave
#concat_df = pd.concat([df_inter_delays, df_delays ]).sort_index().reset_index(drop=True)
#concat_df['intercept'] = 1

#
concat_df = pd.DataFrame(interleave([df_inter_delays.values, df_delays.values]))
concat_df.columns=['start', 'index_c' , 'duration', 'condition']
concat_df['intercept'] = 1
concat_df['index_c'] = concat_df['index_c'].replace([0,1], [1,2]);


#Matrix = pd.DataFrame(concat_df.values) 
#Matrix= Matrix.round(2)
#Matrix.to_csv('dm_fs.par', header=False, index=False, sep='\t', mode='a')
#
#
#
#
#
#concat_df.values.to_csv('dm_fs.par', header=False, index=False, sep='\t', mode='a')
#
Example #34
0
def bind(z, g):
    """Apply a goal to a state stream and then combine the resulting state streams."""
    # We could also use `chain`, but `interleave` preserves the old behavior.
    # return chain.from_iterable(map(g, z))
    return interleave(map(g, z))
Example #35
0
    def merge_dataframes_outer(self, dfs_outer, dfs_outer_outer,
                               year_output_folder, name):

        result = pd.concat(dfs_outer, axis=1)[list(interleave(dfs_outer))]
        result.to_csv(year_output_folder + name, index=True)
        dfs_outer_outer.append(result)
Example #36
0
def make_yaml(path, title=None):
    yaml = f"""---
    title: {title}
    image_dir: {path}
    """

    items = []

    directory = f'static/img/{path}'

    for img_fname in os.listdir(directory):
        i = Image.open(f'{directory}/{img_fname}')
        w, h = i.size
        item_string = f"""
        - name: {img_fname}
          width: {w}
          height: {h}
          caption:
          description:

        """

        # displaying in a column on the page, the apparent height is relative to width
        items.append({'rel_height': h / w, 'yaml': item_string})

    #
    # Need to balance out the columns of images for the gallery
    # The columns are templated according to the modulus of the index of the item in a list
    # so, the kth column will include every image whose index % k == 0
    #

    #
    # In order for a good even bucketing, start with a *reverse* sorted array
    #
    items_reverse_sorted = sorted(items,
                                  key=lambda x: x['rel_height'],
                                  reverse=True)

    # utility function
    def sum_group(xs):
        return sum([x['rel_height'] for x in xs])

    groups = [list() for _ in range(COLUMNS)]

    for item in items_reverse_sorted:
        min_group = groups[0]
        min_sum = sum_group(min_group)

        for g in groups:
            current_sum = sum_group(g)
            if current_sum < min_sum:
                min_group = g
        min_group.append(item)
    #
    # shuffle for looks, so that we don't get a blocky grid
    # we want to leave the "bottom" of the columns where they're at
    # bc they are the smallest images, and shuffling a large image into the end
    # can potentially cause lopsided columns if the total number of images are not evenly divisible
    min_length = min([len(g) for g in groups])

    for g in groups:
        subset = g[:min_length]
        random.shuffle(subset)
        g[:min_length] = subset
    random.shuffle(groups)

    # now stagger them, so they will be doled out into columns
    items = toolz.interleave(groups)

    # finally, cook up the yaml
    yaml_strings = map(lambda x: x['yaml'], items)

    yaml = f"""{yaml}
    images:
        {"".join(yaml_strings)}
---
    """

    return yaml
Example #37
0
def pointVectorFill(points, size):
    numc = len(points)
    if numc == size:
        return points

    # filling if less than size
    if numc < size:

        nmiss = size - numc

        #inc_rate = 2
        while nmiss > 0:
            pos = 0
            newpoints = []

            while (pos < (len(points) - 1)) and (nmiss > 0):

                newpoints.append(((points[pos][0] + points[pos + 1][0]) / 2,
                                  (points[pos][1] + points[pos + 1][1]) / 2))
                nmiss -= 1
                pos += 1

            #inc_rate   += 1
            points = list(interleave([points, newpoints]))

        #plt.plot(x,y,'ro')
        #for p in points:
        #    plt.plot(p[0], p[1], 'bx')

        #plt.show()

        return points
    #...........................................................................
    # selecting significant points..............................................
    else:
        x = []
        y = []
        for p in points:
            x.append(p[0])
            y.append(p[1])

        plt.plot(x, y, 'ro')
        #plt.show()

        #...................first derivative....................................
        slopes = [0]
        ch_points = [(0, 0)]
        for i in range(1, len(x)):
            xdif = x[i] - x[i - 1]
            ydif = y[i] - y[i - 1]
            slope = ydif / (xdif + 1e-10)
            slopes.append(slope)
            ch_points.append((i, slope))

        #plt.plot(range(len(x)),slopes)
        #plt.show()

        #.......................second derivative...............................
        ddx = [0]
        for i in range(1, len(slopes)):
            ddx.append(abs(slopes[i - 1] - slopes[i]))

        #plt.plot(range(len(ddx)), ddx)
        c = sorted(range(len(ddx)), key=lambda k: ddx[k])
        c.reverse()
        c = [0] + c[:(size - 1)]

        if not (numc - 1) in c:
            c[size - 1] = (numc - 1)

        c = sorted(c)

        new_points = []
        for i in c:
            new_points.append(points[i])

        #plt.plot(x,y,'ro')
        #for i in range(size):
        #    plt.plot(x[c[i]], y[c[i]], 'bx')

        #plt.show()
        return new_points
    def _generate_stencil(self):
        init = InitialSimplexPoint(self)
        point = SimplexPoint(self.point, init, 0)
        seen = {point}
        seen_add = seen.add
        first_seen = {point.point_key}
        first_seen_add = first_seen.add
        stencil_points_append = self._stencil_points.append

        for p in point.get_points():
            stencil_points_append(p)
            yield p
            first_seen_add(p.point_key)
            seen_add(p)

        self_reflect = []
        mirror_reflect = []
        reflect = []
        self_contract = [point]
        contract = []

        while True:
            next_self_reflect = []
            next_mirror_reflect = []
            next_reflect = []
            next_self_contract = []
            next_contract = []
            for p in concatv(
                    interleave(x.get_reflections() for x in self_reflect),
                    interleave(x.get_reflections() for x in mirror_reflect),
                    interleave(x.get_reflections() for x in reflect),
                    interleave(x.get_reflections() for x in self_contract),
                    interleave(x.get_reflections() for x in contract),
            ):
                if p.point_key not in first_seen:
                    stencil_points_append(p)
                    yield p
                    first_seen_add(p.point_key)
                    seen_add(p)
                    next_reflect.append(p)
                elif p not in seen:
                    seen_add(p)
                    if p.index == 0:
                        next_self_reflect.append(p)
                    elif p.index == 1:
                        next_mirror_reflect.append(p)
                    else:
                        next_reflect.append(p)
            for p in concatv(
                    interleave(x.get_contractions() for x in self_reflect),
                    interleave(x.get_contractions() for x in mirror_reflect),
                    interleave(x.get_contractions() for x in reflect),
                    interleave(x.get_contractions() for x in self_contract),
                    interleave(x.get_contractions() for x in contract),
            ):
                if p.point_key not in first_seen:
                    stencil_points_append(p)
                    yield p
                    first_seen_add(p.point_key)
                    seen_add(p)
                    next_contract.append(p)
                elif p not in seen:
                    seen_add(p)
                    if p.index == 0:
                        next_self_contract.append(p)
                    else:
                        next_contract.append(p)
            self_reflect = next_self_reflect
            mirror_reflect = next_mirror_reflect
            reflect = next_reflect
            self_contract = next_self_contract
            contract = next_contract
Example #39
0
# Filename: Of_CSVtoCSV.py
# Author: Michael L. Smith
#
# Takes in a directory of CSVs generated from OpenFace 2.0 FeatureExtractor's function and
# converts them to the necessary format needed for my animations.

import os
import numpy as np
import pandas as pd
from toolz import interleave


directory = os.fsencode('/Users/MichaelSmith/Desktop/CSVs/OF_CSVs')

for file in os.listdir(directory):
	filename = os.fsdecode(file)
	savename = filename[:10]

	print(filename)
	if '.csv' in filename:
		#print(filename)
		csv_pd = pd.read_csv(os.path.join(os.fsdecode(directory), filename))
		X = csv_pd.loc[:, ' x_0':' x_67']
		Y = csv_pd.loc[:, ' y_0':' y_67']
		XY = pd.DataFrame(interleave([X.values, Y.values])).T
		XY.to_csv('/Users/MichaelSmith/Desktop/CSVs/ANIM_CSVs/' + savename + '.csv', index=False, header=False)