Example #1
0
def interface(obj):
    if not inspect.isclass(obj):
        raise RuntimeError("interface must be applied to a class")
    if not _is_new_style_class(obj):
        raise RuntimeError("TorchScript interfaces must inherit from 'object'")

    # Expected MRO is:
    #   User module
    #   torch.nn.modules.module.Module
    #   object
    is_module_interface = issubclass(obj, torch.nn.Module) and len(
        obj.mro()) == 3

    if not is_module_interface and len(obj.mro()) > 2:
        raise RuntimeError(
            "TorchScript interface does not support inheritance yet. "
            "Please directly inherit from 'object' or 'nn.Module'.")

    qualified_name = _qualified_name(obj)
    rcb = _jit_internal.createResolutionCallbackFromFrame(1)
    # if this type is a `nn.Module` subclass, generate an module interface type
    # instead of a class interface type, an module interface type only compile
    # the user provided methods as part of the interface
    ast = get_jit_class_def(obj, obj.__name__)
    torch._C._jit_script_interface_compile(qualified_name, ast, rcb,
                                           is_module_interface)
    obj.__torch_script_interface__ = True
    return obj
Example #2
0
 def define(self, src):
     # We use frames_up=1 to get to the proper surrounding scope. The stack
     # will look like:
     # 0. createResolutionCallback
     # 1. define()
     # 2. surrounding scope.
     #
     # createResolutionCallback internally adds 1 to get us to our frame, then
     # we add 1 to get to the proper surrounding scope.
     rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1)
     self._c._define(self._concrete_type, src, rcb)
Example #3
0
    def test_sc(obj, optimize=None, _frames_up=0, _rcb=None):
        qualified_name = _qualified_name(obj)
        if inspect.isclass(obj):
            # If this type is a `nn.Module` subclass, they probably meant to pass
            # an instance instead of a Module
            if issubclass(obj, torch.nn.Module):
                raise RuntimeError("Type '{}' cannot be compiled since it inherits"
                                   " from nn.Module,"
                                   " pass an instance instead".format(obj))

            if not _is_new_style_class(obj):
                raise RuntimeError("TorchScript classes must be new-style classes. "
                                   "Please inherit from 'object'.")
            if len(obj.mro()) > 2:
                raise RuntimeError("TorchScript classes does not support inheritance yet. "
                                   "Please directly inherit from 'object'.")
            if _rcb is None:
                _rcb = _jit_internal.createResolutionCallbackFromFrame(_frames_up + 1)
            _compile_and_register_class(obj, _rcb, qualified_name)
            return obj
        else:
            #_check_directly_compile_overloaded(obj)
            #maybe_already_compiled_fn = _try_get_jit_cached_function(obj)
            #if maybe_already_compiled_fn:
            #    return maybe_already_compiled_fn
            ast = get_jit_def(obj, obj.__name__)
            print("---ast---")
            print(ast)
            if _rcb is None:
                _rcb = _jit_internal.createResolutionCallbackFromClosure(obj)
            print("---rcb---")
            print(_rcb)
            fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
            # Forward docstrings
            fn.__doc__ = obj.__doc__
            #_set_jit_function_cache(obj, fn)
            print("---scripted_fn---")
            print(fn)
            print("---scripted_fn.code---")
            print(fn.code)
            print("---scripted_fn.schema---")
            print(fn.schema)
            print("---scripted_fn.graph---")
            print(fn.graph)
            print("---scripted_fn.name---")
            print(fn.name)
            return fn
Example #4
0
def script_method(fn):
    if not _enabled:
        return fn
    # NOTE: we need to traverse two frames here because the meta-class frame
    # for ScriptModule will be present, as opposed to invoking @script on a
    # a function or invoking define() on a CompilationUnit.
    # The stack will look like:
    #
    # 0. createResolutionCallback()
    # 1. script_method()
    # 2. ScriptModule metaclass frame
    # 3. Surrounding scope
    #
    # createResolutionCallback internally adds 1 to get us to the scope of this
    # function (the calling function). Adding 2 gets us to the proper surrounding scope.
    _rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=2)
    ast = get_jit_def(fn, fn.__name__, self_name="ScriptModule")
    return ScriptMethodStub(_rcb, ast, fn)
Example #5
0
        def define(self, src):
            if "_actual_script_module" in self.__dict__:
                # If we have completed initialization, just defer to the
                # backing RecursiveScriptModule to eagerly compile the provided
                # source.
                return self._actual_script_module.define(src)

            # Otherwise, we are still in the object's __init__.
            # In that case, add `src` as a stub to be compiled.
            #
            # We use frames_up=1 to get to the proper surrounding scope. The stack
            # will look like:
            # 0. createResolutionCallback
            # 1. define()
            # 2. surrounding scope.
            #
            # createResolutionCallback internally adds 1 to get us to our frame, then
            # we add 1 to get to the proper surrounding scope.
            rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1)
            ast = torch._C._parse_source_def(src)
            self._methods[ast.name().name] = ScriptMethodStub(rcb, ast, None)
Example #6
0
def script(obj, optimize=None, _frames_up=0, _rcb=None):
    r"""
    Scripting a function or ``nn.Module`` will inspect the source code, compile
    it as TorchScript code using the TorchScript compiler, and return a :class:`ScriptModule` or
    :class:`ScriptFunction`. TorchScript itself is a subset of the Python language, so not all
    features in Python work, but we provide enough functionality to compute on
    tensors and do control-dependent operations. For a complete guide, see the
    :ref:`language-reference`.

    ``torch.jit.script`` can be used as a function for modules and functions, and as a decorator
    ``@torch.jit.script`` for :ref:`torchscript-classes` and functions.

    Args:
        obj (callable, class, or ``nn.Module``):  The ``nn.Module``, function, or class type to
                                                  compile.

    Returns:
        If ``obj`` is ``nn.Module``, ``script`` returns
        a :class:`ScriptModule` object. The returned :class:`ScriptModule` will
        have the same set of sub-modules and parameters as the
        original ``nn.Module``. If ``obj`` is a standalone function,
        a :class:`ScriptFunction` will be returned.

    **Scripting a function**
        The ``@torch.jit.script`` decorator will construct a :class:`ScriptFunction`
        by compiling the body of the function.

        Example (scripting a function):

        .. testcode::

            import torch

            @torch.jit.script
            def foo(x, y):
                if x.max() > y.max():
                    r = x
                else:
                    r = y
                return r

            print(type(foo))  # torch.jit.ScriptFuncion

            # See the compiled graph as Python code
            print(foo.code)

            # Call the function using the TorchScript interpreter
            foo(torch.ones(2, 2), torch.ones(2, 2))

        .. testoutput::
            :hide:

            ...

    **Scripting an nn.Module**
        Scripting an ``nn.Module`` by default will compile the ``forward`` method and recursively
        compile any methods, submodules, and functions called by ``forward``. If a ``nn.Module`` only uses
        features supported in TorchScript, no changes to the original module code should be necessary. ``script``
        will construct :class:`ScriptModule` that has copies of the attributes, parameters, and methods of
        the original module.

        Example (scripting a simple module with a Parameter):

        .. testcode::

            import torch

            class MyModule(torch.nn.Module):
                def __init__(self, N, M):
                    super(MyModule, self).__init__()
                    # This parameter will be copied to the new ScriptModule
                    self.weight = torch.nn.Parameter(torch.rand(N, M))

                    # When this submodule is used, it will be compiled
                    self.linear = torch.nn.Linear(N, M)

                def forward(self, input):
                    output = self.weight.mv(input)

                    # This calls the `forward` method of the `nn.Linear` module, which will
                    # cause the `self.linear` submodule to be compiled to a `ScriptModule` here
                    output = self.linear(output)
                    return output

            scripted_module = torch.jit.script(MyModule(2, 3))

        Example (scripting a module with traced submodules):

        .. testcode::

            import torch
            import torch.nn as nn
            import torch.nn.functional as F

            class MyModule(nn.Module):
                def __init__(self):
                    super(MyModule, self).__init__()
                    # torch.jit.trace produces a ScriptModule's conv1 and conv2
                    self.conv1 = torch.jit.trace(nn.Conv2d(1, 20, 5), torch.rand(1, 1, 16, 16))
                    self.conv2 = torch.jit.trace(nn.Conv2d(20, 20, 5), torch.rand(1, 20, 16, 16))

                def forward(self, input):
                    input = F.relu(self.conv1(input))
                    input = F.relu(self.conv2(input))
                    return input

            scripted_module = torch.jit.script(MyModule())

        To compile a method other than ``forward`` (and recursively compile anything it calls), add
        the :func:`@torch.jit.export <torch.jit.export>` decorator to the method. To opt out of compilation
        use :func:`@torch.jit.ignore <torch.jit.ignore>` or :func:`@torch.jit.unused <torch.jit.unused>`.

        Example (an exported and ignored method in a module)::

            import torch
            import torch.nn as nn

            class MyModule(nn.Module):
                def __init__(self):
                    super(MyModule, self).__init__()

                @torch.jit.export
                def some_entry_point(self, input):
                    return input + 10

                @torch.jit.ignore
                def python_only_fn(self, input):
                    # This function won't be compiled, so any
                    # Python APIs can be used
                    import pdb
                    pdb.set_trace()

                def forward(self, input):
                    if self.training:
                        self.python_only_fn(input)
                    return input * 99

            scripted_module = torch.jit.script(MyModule())
            print(scripted_module.some_entry_point(torch.randn(2, 2)))
            print(scripted_module(torch.randn(2, 2)))
    """
    if not _enabled:
        return obj

    if optimize is not None:
        warnings.warn(
            "`optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead"
        )
    if isinstance(obj, ScriptModule):
        return obj

    if isinstance(obj, torch.nn.Module):
        obj = call_prepare_scriptable_func(obj)
        return torch.jit._recursive.create_script_module(
            obj, torch.jit._recursive.infer_methods_to_compile)

    qualified_name = _qualified_name(obj)
    if inspect.isclass(obj):
        # If this type is a `nn.Module` subclass, they probably meant to pass
        # an instance instead of a Module
        if issubclass(obj, torch.nn.Module):
            raise RuntimeError("Type '{}' cannot be compiled since it inherits"
                               " from nn.Module,"
                               " pass an instance instead".format(obj))

        if not _is_new_style_class(obj):
            raise RuntimeError(
                "TorchScript classes must be new-style classes. "
                "Please inherit from 'object'.")
        if len(obj.mro()) > 2:
            raise RuntimeError(
                "TorchScript classes does not support inheritance yet. "
                "Please directly inherit from 'object'.")
        if _rcb is None:
            _rcb = _jit_internal.createResolutionCallbackFromFrame(_frames_up +
                                                                   1)
        _compile_and_register_class(obj, _rcb, qualified_name)
        return obj
    else:
        # this is a decorated fn, and we need to the underlying fn and its rcb
        if hasattr(obj, "__script_if_tracing_wrapper"):
            obj = obj.__original_fn
            _rcb = _jit_internal.createResolutionCallbackFromClosure(obj)

        _check_directly_compile_overloaded(obj)
        maybe_already_compiled_fn = _try_get_jit_cached_function(obj)
        if maybe_already_compiled_fn:
            return maybe_already_compiled_fn
        ast = get_jit_def(obj, obj.__name__)
        if _rcb is None:
            _rcb = _jit_internal.createResolutionCallbackFromClosure(obj)
        fn = torch._C._jit_script_compile(qualified_name, ast, _rcb,
                                          get_default_args(obj))
        # Forward docstrings
        fn.__doc__ = obj.__doc__
        _set_jit_function_cache(obj, fn)
        return fn
Example #7
0
 def define(self, lang, rcb=None, _frames_up=0):
     if not rcb:
         rcb = _jit_internal.createResolutionCallbackFromFrame(_frames_up +
                                                               1)
     self._c.define(lang, rcb)
Example #8
0
 def define(self, src):
     rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1)
     self._c._define(self._concrete_type, src, rcb)