Example #1
0
def _pin_memory_loop(in_queue, out_queue, device_id, done_event):
    # This setting is thread local, and prevents the copy in pin_memory from
    # consuming all CPU cores.
    torch.set_num_threads(1)

    torch.cuda.set_device(device_id)

    # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the
    # logic of this function.
    while not done_event.is_set():
        try:
            r = in_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
        except queue.Empty:
            continue
        idx, data = r
        if not done_event.is_set() and not isinstance(data, ExceptionWrapper):
            try:
                data = pin_memory(data)
            except Exception:
                data = ExceptionWrapper(
                    where="in pin memory thread for device {}".format(
                        device_id))
            r = (idx, data)
        while not done_event.is_set():
            try:
                out_queue.put(r, timeout=MP_STATUS_CHECK_INTERVAL)
                break
            except queue.Full:
                continue
        del r  # save memory
 def _work_loss(GPU, inputs, targets, batch, total_batch):
     try:
         cosine = self.LM(inputs,
                          targets=targets,
                          batch=batch,
                          total_batch=total_batch)
         with lock:
             Cosine_MutiGPU[GPU] = cosine
     except:
         ExceptionWrapper(where="LOSSES{GPU}  is error".format(GPU))
 def wx_norm(sub_weights, temp_x, GPU):
     try:
         cosine = F.linear(F.normalize(temp_x),
                           F.normalize(sub_weights))
         # cosine = F.linear(F.normalize(temp_x), sub_weights)
         cosine = torch.chunk(cosine, len(self.GPUS))
         with lock:
             results[GPU] = cosine
     except Exception:
         with lock:
             results[GPU] = ExceptionWrapper(
                 where="weight{GPU}  is error".format(GPU))
Example #4
0
 def _worker(i, module, input, kwargs, device=None):
     torch.set_grad_enabled(grad_enabled)
     if device is None:
         device = get_a_var(input).get_device()
     try:
         with torch.cuda.device(device):
             # this also avoids accidental slicing of `input` if it is a Tensor
             if not isinstance(input, (list, tuple)):
                 input = (input,)
             output = module.predict(*input, **kwargs)
         with lock:
             results[i] = output
     except Exception:
         with lock:
             results[i] = ExceptionWrapper(where="in replica {} on device {}".format(i, device))
Example #5
0
 def _worker(i, module, input, target, kwargs, device=None):
     torch.set_grad_enabled(grad_enabled)
     if device is None:
         device = get_a_var(input).get_device()
     try:
         with torch.cuda.device(device):
             if not isinstance(input, (list, tuple)):
                 input = (input, )
             if not isinstance(target, (list, tuple)):
                 target = (target, )
             output = module(*input, *target, **kwargs)
         with lock:
             results[i] = output
     except Exception:
         with lock:
             results[i] = ExceptionWrapper(
                 where="in replica {} on device {}".format(i, device))
Example #6
0
 def do_one_step():
     try:
         r = in_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
     except queue.Empty:
         return
     idx, data = r
     if not done_event.is_set() and not isinstance(data, ExceptionWrapper):
         try:
             data = pin_memory(data, device)
         except Exception:
             data = ExceptionWrapper(
                 where="in pin memory thread for device {}".format(
                     device_id))
         r = (idx, data)
     while not done_event.is_set():
         try:
             out_queue.put(r, timeout=MP_STATUS_CHECK_INTERVAL)
             break
         except queue.Full:
             continue
Example #7
0
async def _single_task(in_queue, out_queue, device_id, done_event,
                       async_sleep):
    while not done_event.is_set():
        try:
            task = in_queue.get_nowait()
        except queue.Empty:
            await asyncio.sleep(async_sleep)
            continue
        if not done_event.is_set() and not isinstance(task, ExceptionWrapper):
            try:
                task = pin_memory(task)
            except Exception:
                task = ExceptionWrapper(
                    where="in pin memory thread for device {}".format(
                        device_id))
        while not done_event.is_set():
            try:
                out_queue.put(task, timeout=MP_STATUS_CHECK_INTERVAL)
                break
            except queue.Full:
                continue
        del task
Example #8
0
def _worker_loop(dataset_kind, dataset, index_queue, data_queue, done_event,
                 auto_collation, collate_fn, drop_last, seed, init_fn,
                 worker_id, num_workers):
    # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the
    # logic of this function.

    try:
        # Initialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
        # module's handlers are executed after Python returns from C low-level
        # handlers, likely when the same fatal signal had already happened
        # again.
        # https://docs.python.org/3/library/signal.html#execution-of-python-signal-handlers
        signal_handling._set_worker_signal_handlers()

        torch.set_num_threads(1)
        random.seed(seed)
        torch.manual_seed(seed)

        global _worker_info
        _worker_info = WorkerInfo(id=worker_id,
                                  num_workers=num_workers,
                                  seed=seed,
                                  dataset=dataset)

        from torch.utils.data import _DatasetKind

        init_exception = None

        try:
            if init_fn is not None:
                init_fn(worker_id)

            fetcher = _DatasetKind.create_fetcher(dataset_kind, dataset,
                                                  auto_collation, collate_fn,
                                                  drop_last)
        except Exception:
            init_exception = ExceptionWrapper(
                where="in DataLoader worker process {}".format(worker_id))

        # When using Iterable mode, some worker can exit earlier than others due
        # to the IterableDataset behaving differently for different workers.
        # When such things happen, an `_IterableDatasetStopIteration` object is
        # sent over to the main process with the ID of this worker, so that the
        # main process won't send more tasks to this worker, and will send
        # `None` to this worker to properly exit it.
        #
        # Note that we cannot set `done_event` from a worker as it is shared
        # among all processes. Instead, we set the `iteration_end` flag to
        # signify that the iterator is exhausted. When either `done_event` or
        # `iteration_end` is set, we skip all processing step and just wait for
        # `None`.
        iteration_end = False

        watchdog = ManagerWatchdog()

        while watchdog.is_alive():
            try:
                r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
            except queue.Empty:
                continue
            if r is None:
                # Received the final signal
                assert done_event.is_set() or iteration_end
                break
            elif done_event.is_set() or iteration_end:
                # `done_event` is set. But I haven't received the final signal
                # (None) yet. I will keep continuing until get it, and skip the
                # processing steps.
                continue
            idx, index = r
            if init_exception is not None:
                data = init_exception
                init_exception = None
            else:
                try:
                    data = fetcher.fetch(index)
                except Exception as e:
                    if isinstance(e, StopIteration
                                  ) and dataset_kind == _DatasetKind.Iterable:
                        data = _IterableDatasetStopIteration(worker_id)
                        # Set `iteration_end`
                        #   (1) to save future `next(...)` calls, and
                        #   (2) to avoid sending multiple `_IterableDatasetStopIteration`s.
                        iteration_end = True
                    else:
                        # It is important that we don't store exc_info in a variable.
                        # `ExceptionWrapper` does the correct thing.
                        # See NOTE [ Python Traceback Reference Cycle Problem ]
                        data = ExceptionWrapper(
                            where="in DataLoader worker process {}".format(
                                worker_id))
            data_queue.put((idx, data))
            del data, idx, index, r  # save memory
    except KeyboardInterrupt:
        # Main process will raise KeyboardInterrupt anyways.
        pass
    if done_event.is_set():
        data_queue.cancel_join_thread()
        data_queue.close()
Example #9
0
def _worker_loop(dataset, index_queue, data_queue, done_event,
                 collate_fn, seed, init_fn, worker_id):
    try:
        # Initialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
        # module's handlers are executed after Python returns from C low-level
        # handlers, likely when the same fatal signal had already happened
        # again.
        # https://docs.python.org/3/library/signal.html#execution-of-python-signal-handlers

        # signal_handling._set_worker_signal_handlers()

        torch.set_num_threads(1)
        random.seed(seed)
        torch.manual_seed(seed)

        # global _worker_info
        # _worker_info = WorkerInfo(id=worker_id, num_workers=num_workers,
        #                           seed=seed, dataset=dataset)

        init_exception = None

        try:
            if init_fn is not None:
                init_fn(worker_id)

            fetcher = _MapDatasetFetcher(dataset, collate_fn)
        except Exception:
            init_exception = ExceptionWrapper(
                where="in DataLoader worker process {}".format(worker_id))

        iteration_end = False

        watchdog = ManagerWatchdog()

        while watchdog.is_alive():
            try:
                # 尝试获取 batch index
                r = index_queue.get(timeout=5.0)
            except queue.Empty:  # 队列空,则继续循环,直到有数据
                continue
            # 如果外面插入了 _ResumeIteration,表示该epoch worker运行完成,也不要退出,复用
            if isinstance(r, _ResumeIteration):
                # Acknowledge the main process
                data_queue.put(r)
                iteration_end = False
                # Recreate the fetcher for worker-reuse policy
                fetcher = _MapDatasetFetcher(dataset, collate_fn)
                continue
            # 接收到 None,表示 该进程出现了某种异常,所以该进程就要销毁
            elif r is None:
                # 接收到完成训练,可以终止该 worker 进程
                assert done_event.is_set() or iteration_end
                break
            elif done_event.is_set() or iteration_end:
                # 跳过当前
                # `done_event` is set. But I haven't received the final signal
                # (None) yet. I will keep continuing until get it, and skip the
                # processing steps.
                continue
            idx, index = r
            # 如果出现异常,那么当前数据直接返回
            if init_exception is not None:
                data = init_exception
                init_exception = None
            else:
                try:
                    # dtaset+collate_fn 进行组成 Batch data
                    data = fetcher.fetch(index)
                except Exception as e:
                    data = ExceptionWrapper(
                        where="in DataLoader worker process {}".format(worker_id))
            data_queue.put((idx, data))  # 插入共享队列
            del data, idx, index, r  # save memory
    except KeyboardInterrupt:
        # Main process will raise KeyboardInterrupt anyways.
        pass
    # 主进程发送了退出命令,取消
    if done_event.is_set():
        data_queue.cancel_join_thread()
        data_queue.close()
Example #10
0
def _worker_loop(
    dataset_kind,
    dataset,
    index_queue,
    data_queue,
    done_event,
    auto_collation,
    collate_fn,
    drop_last,
    seed,
    init_fn,
    worker_id,
    num_workers,
    persistent_workers,
):
    try:
        # Initialize C side signal handlers for SIGBUS and SIGSEGV. Python signal  # NOQA
        # module's handlers are executed after Python returns from C low-level  # NOQA
        # handlers, likely when the same fatal signal had already happened  # NOQA
        # again.
        # https://docs.python.org/3/library/signal.html#execution-of-python-signal-handlers  # NOQA
        signal_handling._set_worker_signal_handlers()

        torch.set_num_threads(1)
        random.seed(seed)
        torch.manual_seed(seed)

        global _worker_info
        _worker_info = WorkerInfo(
            id=worker_id, num_workers=num_workers, seed=seed, dataset=dataset
        )

        from torch.utils.data import _DatasetKind

        init_exception = None

        try:
            if init_fn is not None:
                init_fn(worker_id)

            fetcher = _DatasetKind.create_fetcher(
                dataset_kind, dataset, auto_collation, collate_fn, drop_last
            )
        except Exception:
            init_exception = ExceptionWrapper(
                where="in DataLoader worker process {}".format(worker_id)
            )

        iteration_end = False

        watchdog = ManagerWatchdog()

        while watchdog.is_alive():
            try:
                r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
            except queue.Empty:
                continue
            if isinstance(r, _ResumeIteration):
                iteration_end = False
                # Recreate the fetcher for worker-reuse policy
                fetcher = _DatasetKind.create_fetcher(
                    dataset_kind,
                    dataset,
                    auto_collation,
                    collate_fn,
                    drop_last,
                )
                continue
            elif r is None:
                # Received the final signal
                assert done_event.is_set() or iteration_end
                if done_event.is_set() or (
                    iteration_end and not persistent_workers
                ):
                    break
                continue
            elif done_event.is_set() or iteration_end:
                # `done_event` is set. But I haven't received the final signal
                # (None) yet. I will keep continuing until get it, and skip the
                # processing steps.
                continue

            idx, index = r
            if init_exception is not None:
                data = init_exception
                init_exception = None
            else:
                try:
                    data = fetcher.fetch(index)
                except Exception as e:
                    if (
                        isinstance(e, StopIteration)
                        and dataset_kind == _DatasetKind.Iterable
                    ):
                        data = _IterableDatasetStopIteration(worker_id)
                        iteration_end = True
                    else:
                        data = ExceptionWrapper(
                            where="in DataLoader worker process {}".format(
                                worker_id
                            )
                        )
            data_queue.put((idx, data))
            del data, idx, index, r  # save memory
    except KeyboardInterrupt:
        # Main process will raise KeyboardInterrupt anyways.
        pass
    if done_event.is_set():
        data_queue.cancel_join_thread()
        data_queue.close()