def __init__(self, args, env, env_params): self.args = args self.env = env self.env_params = env_params self.cauchy = Cauchy(torch.tensor([0.0]), torch.tensor([0.5])) # create the network self.forward_network = ForwardMap(env_params, args.embed_dim) self.backward_network = BackwardMap(env_params, args.embed_dim) # build up the target network self.forward_target_network = ForwardMap(env_params, args.embed_dim) self.backward_target_network = BackwardMap(env_params, args.embed_dim) # load the weights into the target networks self.forward_target_network.load_state_dict( self.forward_network.state_dict()) self.backward_target_network.load_state_dict( self.backward_network.state_dict()) # if use gpu if self.args.cuda: self.forward_network.cuda() self.backward_network.cuda() self.forward_target_network.cuda() self.backward_target_network.cuda() # create the optimizer f_params = [param for param in self.forward_network.parameters()] b_params = [param for param in self.backward_network.parameters()] self.fb_optim = torch.optim.Adam(f_params + b_params, lr=self.args.lr) # self.backward_optim = torch.optim.Adam(self.backward_network.parameters(), lr=self.args.lr_backward) # her sampler self.her_module = her_sampler(self.args.replay_strategy, self.args.replay_k, self.env.compute_reward) # create the replay buffer self.buffer = replay_buffer(self.env_params, self.args.buffer_size, self.her_module.sample_her_transitions) self.o_norm = normalizer(size=env_params['obs'], default_clip_range=self.args.clip_range) self.g_norm = normalizer(size=env_params['goal'], default_clip_range=self.args.clip_range) if args.save_dir is not None: # create the dict for store the model if not os.path.exists(self.args.save_dir): os.mkdir(self.args.save_dir) print(' ' * 26 + 'Options') for k, v in vars(self.args).items(): print(' ' * 26 + k + ': ' + str(v)) with open(self.args.save_dir + "/arguments.pkl", 'wb') as f: pickle.dump(self.args, f) with open('{}/score_monitor.csv'.format(self.args.save_dir), "wt") as monitor_file: monitor = csv.writer(monitor_file) monitor.writerow([ 'epoch', 'eval', 'avg dist', 'eval (GPI)', 'avg dist (GPI)' ])
def __init__(self, args, env, env_params): self.args = args self.env = env self.env_params = env_params self.cauchy = Cauchy(torch.tensor([0.0]), torch.tensor([0.5])) self.featuriser = RadialBasisFunction2D(1, 21, 0.05, cuda=args.cuda) # self.featuriser.transform = lambda x: get_cos_sin_features(x) # create the network self.forward_network = ForwardMap(env_params, args.embed_dim) self.backward_network = BackwardMap(env_params, args.embed_dim) # build up the target network self.forward_target_network = ForwardMap(env_params, args.embed_dim) self.backward_target_network = BackwardMap(env_params, args.embed_dim) # load the weights into the target networks self.forward_target_network.load_state_dict(self.forward_network.state_dict()) self.backward_target_network.load_state_dict(self.backward_network.state_dict()) # if use gpu if self.args.cuda: self.forward_network.cuda() self.backward_network.cuda() self.forward_target_network.cuda() self.backward_target_network.cuda() # create the optimizer f_params = [param for param in self.forward_network.parameters()] b_params = [param for param in self.backward_network.parameters()] self.f_optim = torch.optim.Adam(f_params, lr=self.args.lr) self.b_optim = torch.optim.Adam(b_params, lr=self.args.lr) self.fb_optim = torch.optim.Adam(f_params + b_params, lr=self.args.lr) # self.backward_optim = torch.optim.Adam(self.backward_network.parameters(), lr=self.args.lr_backward) # her sampler # create the replay buffer self.buffer = ReplayBuffer(self.args.buffer_size) if args.save_dir is not None: if not os.path.exists(self.args.save_dir): os.mkdir(self.args.save_dir) print(' ' * 26 + 'Options') for k, v in vars(self.args).items(): print(' ' * 26 + k + ': ' + str(v)) with open(self.args.save_dir + "/arguments.pkl", 'wb') as f: pickle.dump(self.args, f) with open('{}/score_monitor.csv'.format(self.args.save_dir), "wt") as monitor_file: monitor = csv.writer(monitor_file) monitor.writerow(['epoch', 'eval', 'dist', 'eval (GPI)', 'dist (GPI)', 'loss', 'entropy'])
def sample_noise(mu, sigma, noise_type='cauchy', size=1, device='cpu', minimize_rk2_error=False): if not minimize_rk2_error: if noise_type == 'cauchy': d = Cauchy(torch.tensor([mu]), torch.tensor([sigma])) elif noise_type == 'normal': d = Normal(torch.tensor([mu]), torch.tensor([sigma])) else: if noise_type == 'cauchy': d = Cauchy(torch.tensor([2 / 3.]), torch.tensor([2 / 3. * sigma])) elif noise_type == 'normal': d = Normal(torch.tensor([2 / 3.]), torch.tensor([2 / 3. * sigma])) return torch.tensor([d.sample() for _ in range(size)], device=device)
def __init__(self, scale, validate_args=None): super(HalfCauchy, self).__init__(Cauchy(0, scale), AbsTransform(), validate_args=validate_args)
def __init__(self, scale, validate_args=None): base_dist = Cauchy(0, scale) super(HalfCauchy, self).__init__(base_dist, AbsTransform(), validate_args=validate_args)
class FBAgent: def __init__(self, args, env, env_params): self.args = args self.env = env self.env_params = env_params self.cauchy = Cauchy(torch.tensor([0.0]), torch.tensor([0.5])) # create the network self.forward_network = ForwardMap(env_params, args.embed_dim) self.backward_network = BackwardMap(env_params, args.embed_dim) # build up the target network self.forward_target_network = ForwardMap(env_params, args.embed_dim) self.backward_target_network = BackwardMap(env_params, args.embed_dim) # load the weights into the target networks self.forward_target_network.load_state_dict( self.forward_network.state_dict()) self.backward_target_network.load_state_dict( self.backward_network.state_dict()) # if use gpu if self.args.cuda: self.forward_network.cuda() self.backward_network.cuda() self.forward_target_network.cuda() self.backward_target_network.cuda() # create the optimizer f_params = [param for param in self.forward_network.parameters()] b_params = [param for param in self.backward_network.parameters()] self.fb_optim = torch.optim.Adam(f_params + b_params, lr=self.args.lr) # self.backward_optim = torch.optim.Adam(self.backward_network.parameters(), lr=self.args.lr_backward) # her sampler self.her_module = her_sampler(self.args.replay_strategy, self.args.replay_k, self.env.compute_reward) # create the replay buffer self.buffer = replay_buffer(self.env_params, self.args.buffer_size, self.her_module.sample_her_transitions) self.o_norm = normalizer(size=env_params['obs'], default_clip_range=self.args.clip_range) self.g_norm = normalizer(size=env_params['goal'], default_clip_range=self.args.clip_range) if args.save_dir is not None: # create the dict for store the model if not os.path.exists(self.args.save_dir): os.mkdir(self.args.save_dir) print(' ' * 26 + 'Options') for k, v in vars(self.args).items(): print(' ' * 26 + k + ': ' + str(v)) with open(self.args.save_dir + "/arguments.pkl", 'wb') as f: pickle.dump(self.args, f) with open('{}/score_monitor.csv'.format(self.args.save_dir), "wt") as monitor_file: monitor = csv.writer(monitor_file) monitor.writerow([ 'epoch', 'eval', 'avg dist', 'eval (GPI)', 'avg dist (GPI)' ]) def learn(self): """ train the network """ # start to collect samples # print('MPI SIZE: ', MPI.COMM_WORLD.Get_size()) for epoch in range(self.args.n_epochs): for _ in range(self.args.n_cycles): mb_obs, mb_ag, mb_g, mb_actions = [], [], [], [] for _ in range(self.args.num_rollouts_per_cycle): # reset the rollouts ep_obs, ep_ag, ep_g, ep_actions = [], [], [], [] # reset the environment observation = self.env.reset() obs = observation['observation'] ag = observation['achieved_goal'] g = observation['desired_goal'] if self.args.w_sampling == 'goal_oriented': g_tensor = self._preproc_g(g) with torch.no_grad(): w = self.backward_network(g_tensor) elif self.args.w_sampling == 'uniform_ball': w = self.sample_uniform_ball(1) elif self.args.w_sampling == 'cauchy_ball': w = self.sample_cauchy_ball(1) # start to collect samples for t in range(self.env_params['max_timesteps']): with torch.no_grad(): obs_tensor = self._preproc_o(obs) action = self.act_e_greedy(obs_tensor, w, update_eps=0.2) # feed the actions into the environment observation_new, _, _, info = self.env.step(action) obs_new = observation_new['observation'] ag_new = observation_new['achieved_goal'] # append rollouts ep_obs.append(obs.copy()) ep_ag.append(ag.copy()) ep_g.append(g.copy()) ep_actions.append(action) # re-assign the observation obs = obs_new ag = ag_new ep_obs.append(obs.copy()) ep_ag.append(ag.copy()) mb_obs.append(ep_obs) mb_ag.append(ep_ag) mb_g.append(ep_g) mb_actions.append(ep_actions) # convert them into arrays mb_obs = np.array(mb_obs) mb_ag = np.array(mb_ag) mb_g = np.array(mb_g) mb_actions = np.array(mb_actions) # store the episodes self.buffer.store_episode([mb_obs, mb_ag, mb_g, mb_actions]) # update normalizer statistics self._update_normalizer([mb_obs, mb_ag, mb_g, mb_actions]) for _ in range(self.args.n_batches): # train the network self._update_network() # soft update self._soft_update_target_network(self.forward_target_network, self.forward_network) self._soft_update_target_network(self.backward_target_network, self.backward_network) # start to do the evaluation success_rate, avg_dist = self._eval_agent() success_rate_gpi, avg_dist_gpi = self._eval_gpi_agent( num_gpi=self.args.num_gpi) print('[{}] epoch is: {}, eval: {:.3f}, avg_dist : {:.3f}, ' 'eval (GPI): {:.3f}, avg_dist (GPI): {:.3f}'.format( datetime.now(), epoch, success_rate, avg_dist, success_rate_gpi, avg_dist_gpi)) with open('{}/score_monitor.csv'.format(self.args.save_dir), "a") as monitor_file: monitor = csv.writer(monitor_file) monitor.writerow([ epoch, success_rate, avg_dist, success_rate_gpi, avg_dist_gpi ]) torch.save([ self.forward_network.state_dict(), self.backward_network.state_dict() ], os.path.join(self.args.save_dir, 'model.pt')) def sample_uniform_ball(self, n, eps=1e-10): gaussian_rdv = torch.FloatTensor(n, self.args.embed_dim).normal_(mean=0, std=1) gaussian_rdv /= torch.norm(gaussian_rdv, dim=-1, keepdim=True) + eps uniform_rdv = torch.FloatTensor(n, 1).uniform_() w = np.sqrt(self.args.embed_dim) * gaussian_rdv * uniform_rdv if self.args.cuda: w = w.cuda() return w def sample_cauchy_ball(self, n, eps=1e-10): gaussian_rdv = torch.FloatTensor(n, self.args.embed_dim).normal_(mean=0, std=1) gaussian_rdv /= torch.norm(gaussian_rdv, dim=-1, keepdim=True) + eps cauchy_rdv = self.cauchy.sample((n, )) w = np.sqrt(self.args.embed_dim) * gaussian_rdv * cauchy_rdv if self.args.cuda: w = w.cuda() return w # pre_process the inputs def _preproc_o(self, obs): # obs = self._clip(obs) obs_norm = self.o_norm.normalize(obs) obs_tensor = torch.tensor(obs_norm, dtype=torch.float32).unsqueeze(0) if self.args.cuda: obs_tensor = obs_tensor.cuda() return obs_tensor def _preproc_g(self, g): # g = self._clip(g) g_norm = self.g_norm.normalize(g) g_tensor = torch.tensor(g_norm, dtype=torch.float32).unsqueeze(0) if self.args.cuda: g_tensor = g_tensor.cuda() return g_tensor # update the normalizer def _update_normalizer(self, episode_batch): mb_obs, mb_ag, mb_g, mb_actions = episode_batch mb_obs_next = mb_obs[:, 1:, :] mb_ag_next = mb_ag[:, 1:, :] # get the number of normalization transitions num_transitions = mb_actions.shape[1] # create the new buffer to store them buffer_temp = { 'obs': mb_obs, 'ag': mb_ag, 'g': mb_g, 'actions': mb_actions, 'obs_next': mb_obs_next, 'ag_next': mb_ag_next, } transitions = self.her_module.sample_her_transitions( buffer_temp, num_transitions) obs, g = transitions['obs'], transitions['ag'] # replace g by ag # pre process the obs and g transitions['obs'], transitions['g'] = self._clip(obs), self._clip(g) # update self.o_norm.update(transitions['obs']) self.g_norm.update(transitions['g']) # recompute the stats self.o_norm.recompute_stats() self.g_norm.recompute_stats() def act_gpi(self, obs, w_train, w_eval): # import pdb # pdb.set_trace() num_gpi = w_train.shape[0] obs_repeat = obs.repeat(num_gpi, 1) w_eval_repeat = w_eval.repeat(num_gpi, 1) f = self.forward_network(obs_repeat, w_train) z = torch.einsum('sda, sd -> sa', f, w_eval_repeat).max(0)[0] return z.max(0)[1] # Acts based on single state (no batch) def act(self, obs, w, target_network=False): if target_network: f = self.forward_target_network(obs, w) else: f = self.forward_network(obs, w) z = torch.einsum('sda, sd -> sa', f, w) return z.max(1)[1] def get_policy(self, obs, w, policy_type='boltzmann', temp=1, eps=0.01, target_network=False): if target_network: f = self.forward_target_network(obs, w) else: f = self.forward_network(obs, w) z = torch.einsum('sda, sd -> sa', f, w) return extract_policy(z, policy_type=policy_type, temp=temp, eps=eps) # Acts with an epsilon-greedy policy def act_e_greedy(self, obs, g, update_eps=0.2): return random.randrange( self.env_params['action'] ) if random.random() < update_eps else self.act(obs, g).item() def _clip(self, o): o = np.clip(o, -self.args.clip_obs, self.args.clip_obs) return o # soft update def _soft_update_target_network(self, target, source): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_((1 - self.args.polyak) * param.data + self.args.polyak * target_param.data) # update the network def _update_network(self): # sample the episodes transitions = self.buffer.sample(self.args.batch_size) other_transitions = self.buffer.sample(self.args.batch_size) # pre-process the observation and goal o, o_next, g, ag = transitions['obs'], transitions[ 'obs_next'], transitions['g'], transitions['ag'] transitions['obs'], transitions['g'] = self.o_norm.normalize(o)\ , self.g_norm.normalize(g) transitions['obs_next'] = self.o_norm.normalize(o_next) transitions['ag'] = self.g_norm.normalize(ag) other_transitions['ag'] = self.g_norm.normalize( other_transitions['ag']) # other_ag = transitions['g'] # transfer them into the tensor obs_tensor = torch.tensor(transitions['obs'], dtype=torch.float32) g_tensor = torch.tensor(transitions['g'], dtype=torch.float32) obs_next_tensor = torch.tensor(transitions['obs_next'], dtype=torch.float32) actions_tensor = torch.tensor(transitions['actions'], dtype=torch.long) ag_tensor = torch.tensor(transitions['ag'], dtype=torch.float32) # ag_other_tensor = torch.tensor(other_ag, dtype=torch.float32) ag_other_tensor = torch.tensor(other_transitions['ag'], dtype=torch.float32) if self.args.cuda: obs_tensor = obs_tensor.cuda() g_tensor = g_tensor.cuda() obs_next_tensor = obs_next_tensor.cuda() actions_tensor = actions_tensor.cuda() ag_tensor = ag_tensor.cuda() ag_other_tensor = ag_other_tensor.cuda() if self.args.w_sampling == 'goal_oriented': with torch.no_grad(): w = self.backward_network(g_tensor) w = w.detach() elif self.args.w_sampling == 'uniform_ball': w = self.sample_uniform_ball(self.args.batch_size) elif self.args.w_sampling == 'cauchy_ball': w = self.sample_cauchy_ball(self.args.batch_size) # calculate the target Q value function with torch.no_grad(): if self.args.soft_update: pi = self.get_policy(obs_next_tensor, w, policy_type='boltzmann', temp=self.args.temp, target_network=True) f_next = torch.einsum( 'sda, sa -> sd', self.forward_target_network(obs_next_tensor, w), pi) else: actions_next_tensor = self.act(obs_next_tensor, w, target_network=True) next_idxs = actions_next_tensor[:, None].repeat( 1, self.args.embed_dim)[:, :, None] f_next = self.forward_target_network( obs_next_tensor, w).gather(-1, next_idxs).squeeze() # batch x dim b_next = self.backward_target_network( ag_other_tensor) # batch x dim z_next = torch.einsum('sd, td -> st', f_next, b_next) # batch x batch z_next = z_next.detach() # # clip the q value # clip_return = 1 / (1 - self.args.gamma) # target_q_value = torch.clamp(target_q_value, -clip_return, 0) # the forward loss idxs = actions_tensor[:, None].repeat(1, self.args.embed_dim)[:, :, None] f = self.forward_network(obs_tensor, w).gather(-1, idxs).squeeze() b = self.backward_network(ag_tensor) b_other = self.backward_network(ag_other_tensor) z_diag = torch.einsum('sd, sd -> s', f, b) # batch z = torch.einsum('sd, td -> st', f, b_other) # batch x batch fb_loss = 0.5 * ( z - self.args.gamma * z_next).pow(2).mean() - z_diag.mean() # compute orthonormality's regularisation loss b_b_other = torch.einsum('sd, xd -> sx', b, b_other) # batch x batch b_b_other_detach = torch.einsum('sd, xd -> sx', b, b_other.detach()) # batch x batch b_b_detach = torch.einsum('sd, sd -> s', b, b.detach()) # batch reg_loss = (b_b_detach * b_b_other.detach()).mean() - b_b_other_detach.mean() fb_loss += self.args.reg_coef * reg_loss # update the forward_network self.fb_optim.zero_grad() fb_loss.backward() self.fb_optim.step() # the backward loss # f = self.forward_network(obs_norm_tensor, actions_tensor, w) # b = self.backward_network(ag_norm_tensor) # b_other = self.backward_network(g_other_norm_tensor) # z_diag = torch.einsum('sd, sd -> s', f, b) # batch # z = torch.einsum('sd, td -> st', f, b_other) # batch x batch # b_loss = 0.5 * (z - self.args.gamma * z_next).pow(2).mean() - z_diag.mean() # compute orthonormality's regularisation loss # b_b_other = torch.einsum('sd, xd -> sx', b, b_other) # batch x batch # b_b_other_detach = torch.einsum('sd, xd -> sx', b, b_other.detach()) # batch x batch # b_b_detach = torch.einsum('sd, sd -> s', b, b.detach()) # batch # reg_loss = (b_b_detach * b_b_other.detach()).mean() - b_b_other_detach.mean() # b_loss += self.args.reg_coef * reg_loss # # # update the backward_network # self.backward_optim.zero_grad() # b_loss.backward() # sync_grads(self.backward_network) # self.backward_optim.step() # print('f_loss: {}, b_loss: {}'.format(f_loss.item(), b_loss.item())) # do the evaluation def _eval_agent(self): total_success_rate = [] total_dist = [] for _ in range(self.args.n_test_rollouts): per_success_rate = [] per_dist = [] observation = self.env.reset() obs = observation['observation'] g = observation['desired_goal'] # for _ in range(self.env_params['max_timesteps']): for _ in range(25): with torch.no_grad(): g_tensor = self._preproc_g(g) w = self.backward_network(g_tensor) obs_tensor = self._preproc_o(obs) action = self.act(obs_tensor, w).item() observation_new, _, _, info = self.env.step(action) obs = observation_new['observation'] g = observation_new['desired_goal'] dist = goal_distance(observation_new['achieved_goal'], observation_new['desired_goal']) # per_dist.append(dist) # per_success_rate.append(info['is_success']) per_dist = dist per_success_rate = info['is_success'] if info['is_success'] > 0: break total_success_rate.append(per_success_rate) total_dist.append(per_dist) total_success_rate = np.array(total_success_rate) avg_success_rate = np.mean(total_success_rate) total_dist = np.array(total_dist) avg_dist = np.mean(total_dist) return avg_success_rate, avg_dist def _eval_gpi_agent(self, num_gpi=20): total_success_rate = [] total_dist = [] for _ in range(self.args.n_test_rollouts): per_success_rate = [] per_dist = [] observation = self.env.reset() obs = observation['observation'] g = observation['desired_goal'] if self.args.w_sampling == 'goal_oriented': transitions = self.buffer.sample(num_gpi) g_train = transitions['g'] g_train_tensor = torch.tensor(g_train, dtype=torch.float32) if self.args.cuda: g_train_tensor = g_train_tensor.cuda() w_train = self.backward_network(g_train_tensor) elif self.args.w_sampling == 'uniform_ball': w_train = self.sample_uniform_ball(num_gpi) elif self.args.w_sampling == 'cauchy_ball': w_train = self.sample_cauchy_ball(num_gpi) # for _ in range(self.env_params['max_timesteps']): for _ in range(25): with torch.no_grad(): g_tensor = self._preproc_g(g) w = self.backward_network(g_tensor) obs_tensor = self._preproc_o(obs) action = self.act_gpi(obs_tensor, w_train, w).item() observation_new, _, _, info = self.env.step(action) obs = observation_new['observation'] g = observation_new['desired_goal'] dist = goal_distance(observation_new['achieved_goal'], observation_new['desired_goal']) # per_dist.append(dist) # per_success_rate.append(info['is_success']) per_dist = dist per_success_rate = info['is_success'] if info['is_success'] > 0: break total_success_rate.append(per_success_rate) total_dist.append(per_dist) total_success_rate = np.array(total_success_rate) avg_success_rate = np.mean(total_success_rate) total_dist = np.array(total_dist) avg_dist = np.mean(total_dist) return avg_success_rate, avg_dist
class FBAgent: def __init__(self, args, env, env_params): self.args = args self.env = env self.env_params = env_params self.cauchy = Cauchy(torch.tensor([0.0]), torch.tensor([0.5])) # create the network self.forward_network = ForwardMap(env_params, args.embed_dim) self.backward_network = BackwardMap(env_params, args.embed_dim) # build up the target network self.forward_target_network = ForwardMap(env_params, args.embed_dim) self.backward_target_network = BackwardMap(env_params, args.embed_dim) # load the weights into the target networks self.forward_target_network.load_state_dict(self.forward_network.state_dict()) self.backward_target_network.load_state_dict(self.backward_network.state_dict()) # if use gpu if self.args.cuda: self.forward_network.cuda() self.backward_network.cuda() self.forward_target_network.cuda() self.backward_target_network.cuda() # create the optimizer f_params = [param for param in self.forward_network.parameters()] b_params = [param for param in self.backward_network.parameters()] self.f_optim = torch.optim.Adam(f_params, lr=self.args.lr) self.b_optim = torch.optim.Adam(b_params, lr=self.args.lr) self.fb_optim = torch.optim.Adam(f_params + b_params, lr=self.args.lr) # self.backward_optim = torch.optim.Adam(self.backward_network.parameters(), lr=self.args.lr_backward) # her sampler # create the replay buffer self.buffer = ReplayBuffer(self.args.buffer_size) if args.save_dir is not None: if not os.path.exists(self.args.save_dir): os.mkdir(self.args.save_dir) print(' ' * 26 + 'Options') for k, v in vars(self.args).items(): print(' ' * 26 + k + ': ' + str(v)) with open(self.args.save_dir + "/arguments.pkl", 'wb') as f: pickle.dump(self.args, f) with open('{}/score_monitor.csv'.format(self.args.save_dir), "wt") as monitor_file: monitor = csv.writer(monitor_file) monitor.writerow(['epoch', 'eval', 'eval (GPI)', 'loss', 'entropy']) def learn(self): """ train the network """ best_perf = 0 # start to collect samples for epoch in range(self.args.n_epochs): for _ in range(self.args.n_cycles): for _ in range(self.args.num_rollouts_per_cycle): # reset the rollouts # reset the environment obs = self.env.reset() g = self.env.goal if self.args.w_sampling == 'goal_oriented': g_tensor = self._preproc_g(g) with torch.no_grad(): w = self.backward_network(g_tensor) elif self.args.w_sampling == 'uniform_ball': w = self.sample_uniform_ball(1) elif self.args.w_sampling == 'cauchy_ball': w = self.sample_cauchy_ball(1) # start to collect samples for t in range(self.env_params['max_timesteps']): with torch.no_grad(): obs_tensor = self._preproc_o(obs) action = self.act_e_greedy(obs_tensor, w, update_eps=self.args.update_eps) # feed the actions into the environment obs_new, reward, done, info = self.env.step(action) # add transition self.buffer.add(obs, g, action, reward, obs_new, done) if done: obs = self.env.reset() g = self.env.goal else: obs = obs_new for _ in range(self.args.n_batches): # train the network fb_loss, entropy = self._update_network() # soft update self._soft_update_target_network(self.forward_target_network, self.forward_network) self._soft_update_target_network(self.backward_target_network, self.backward_network) # self._hard_update_target_network(self.forward_target_network, self.forward_network) # self._hard_update_target_network(self.backward_target_network, self.backward_network) # start to do the evaluation perf, gpi_perf = self._eval_agent(num_gpi=self.args.num_gpi) print('[{}] epoch is: {}, eval: {:.3f}, ' 'eval (GPI): {:.3f}, loss: {:.3f}, entropy: {:.3f}'.format(datetime.now(), epoch, perf, gpi_perf, fb_loss, entropy)) with open('{}/score_monitor.csv'.format(self.args.save_dir), "a") as monitor_file: monitor = csv.writer(monitor_file) monitor.writerow([epoch, perf, gpi_perf, fb_loss, entropy]) torch.save([self.forward_network.state_dict(), self.backward_network.state_dict()], os.path.join(self.args.save_dir, 'model.pt')) if perf > best_perf: torch.save([self.forward_network.state_dict(), self.backward_network.state_dict()], os.path.join(self.args.save_dir, 'best_model.pt')) def sample_uniform_ball(self, n, eps=1e-10): gaussian_rdv = torch.FloatTensor(n, self.args.embed_dim).normal_(mean=0, std=1) gaussian_rdv /= torch.norm(gaussian_rdv, dim=-1, keepdim=True) + eps uniform_rdv = torch.FloatTensor(n, 1).uniform_() w = np.sqrt(self.args.embed_dim) * gaussian_rdv * uniform_rdv # w = gaussian_rdv * uniform_rdv # w = w.repeat(n, 1) if self.args.cuda: w = w.cuda() return w def sample_cauchy_ball(self, n, eps=1e-10): gaussian_rdv = torch.FloatTensor(n, self.args.embed_dim).normal_(mean=0, std=1) gaussian_rdv /= torch.norm(gaussian_rdv, dim=-1, keepdim=True) + eps cauchy_rdv = self.cauchy.sample((n, )) w = np.sqrt(self.args.embed_dim) * gaussian_rdv * cauchy_rdv # w = gaussian_rdv * uniform_rdv # w = w.repeat(n, 1) if self.args.cuda: w = w.cuda() return w # pre_process the inputs def _preproc_o(self, obs): obs_tensor = torch.tensor(obs, dtype=torch.float32).unsqueeze(0) if self.args.cuda: obs_tensor = obs_tensor.cuda() return obs_tensor def _preproc_g(self, g): g_tensor = torch.tensor(g, dtype=torch.float32).unsqueeze(0) if self.args.cuda: g_tensor = g_tensor.cuda() return g_tensor def get_policy(self, w, obs=None, policy_type='boltzmann', temp=1, eps=0.01, target_network=False): if obs is None: obs = torch.eye(self.env.state_space) # S x S w = w.repeat(self.env.state_space, 1) if self.args.cuda: obs = obs.cuda() # S x S if target_network: f = self.forward_target_network(obs, w) else: f = self.forward_network(obs, w) z = torch.einsum('sda, sd -> sa', f, w) return extract_policy(z, policy_type=policy_type, temp=temp, eps=eps) def get_gpi_policy(self, w_train, w_eval, obs=None, policy_type='boltzmann', temp=0.1, eps=0.01): if obs is None: obs = torch.eye(self.env.state_space) # S x S if self.args.cuda: obs = obs.cuda() # S x S num_gpi = w_train.shape[0] obs_repeat = obs.repeat(1, num_gpi).reshape(num_gpi * self.env.state_space, -1) w_eval_repeat = w_eval.repeat(num_gpi * self.env.state_space, 1) w_train_repeat = w_train.repeat(self.env.state_space, 1) f = self.forward_network(obs_repeat, w_train_repeat) z = torch.einsum('sda, sd -> sa', f, w_eval_repeat).reshape(self.env.state_space, num_gpi, self.env.action_space) z = z.max(1)[0] return extract_policy(z, policy_type=policy_type, temp=temp, eps=eps) def act_gpi(self, obs, w_train, w_eval): # import pdb # pdb.set_trace() num_gpi = w_train.shape[0] obs_repeat = obs.repeat(num_gpi, 1) w_eval_repeat = w_eval.repeat(num_gpi, 1) f = self.forward_network(obs_repeat, w_train) z = torch.einsum('sda, sd -> sa', f, w_eval_repeat).max(0)[0] return z.max(0)[1] # Acts based on single state (no batch) def act(self, obs, w, target_network=False): if target_network: f = self.forward_target_network(obs, w) else: f = self.forward_network(obs, w) z = torch.einsum('sda, sd -> sa', f, w) # import pdb # pdb.set_trace() y = z.max(1)[1] return y # Acts with an epsilon-greedy policy def act_e_greedy(self, obs, g, update_eps=0.2): return random.randrange(self.env_params['action']) if random.random() < update_eps else self.act(obs, g).item() # soft update def _soft_update_target_network(self, target, source): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_((1 - self.args.polyak) * param.data + self.args.polyak * target_param.data) def _hard_update_target_network(self, target, source): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(param.data) # update the network def _update_network(self): # sample the episodes transitions = self.buffer.sample(self.args.batch_size) other_transitions = self.buffer.sample(self.args.batch_size) # transfer them into the tensor obs_tensor = torch.tensor(transitions['obs'], dtype=torch.float32) g_tensor = torch.tensor(transitions['g'], dtype=torch.float32) obs_next_tensor = torch.tensor(transitions['obs_next'], dtype=torch.float32) actions_tensor = torch.tensor(transitions['action'], dtype=torch.long) obs_other_tensor = torch.tensor(other_transitions['obs'], dtype=torch.float32) actions_other_tensor = torch.tensor(other_transitions['action'], dtype=torch.long) if self.args.cuda: obs_tensor = obs_tensor.cuda() g_tensor = g_tensor.cuda() obs_next_tensor = obs_next_tensor.cuda() actions_tensor = actions_tensor.cuda() obs_other_tensor = obs_other_tensor.cuda() actions_other_tensor = actions_other_tensor.cuda() if self.args.w_sampling == 'goal_oriented': with torch.no_grad(): w = self.backward_network(g_tensor) w = w.detach() elif self.args.w_sampling == 'uniform_ball': w = self.sample_uniform_ball(self.args.batch_size) elif self.args.w_sampling == 'cauchy_ball': w = self.sample_cauchy_ball(self.args.batch_size) # calculate the target Q value function with torch.no_grad(): # import pdb # pdb.set_trace() # actions_next_tensor = self.act(obs_next_tensor, w, target_network=True) # next_idxs = actions_next_tensor[:, None].repeat(1, self.args.embed_dim)[:, :, None] # f_next = self.forward_target_network(obs_next_tensor, w).gather(-1, next_idxs).squeeze() # batch x dim pi = self.get_policy(w, obs=obs_next_tensor, policy_type='boltzmann', temp=self.args.temp, target_network=True) entropy = nanmean(compute_entropy(pi)) f_next = torch.einsum('sda, sa -> sd', self.forward_target_network(obs_next_tensor, w), pi) b_next = self.backward_target_network(obs_other_tensor) # batch x dim # idxs_other = actions_other_tensor[:, None].repeat(1, self.args.embed_dim)[:, :, None] # b_next = self.backward_target_network(obs_other_tensor).gather(-1, idxs_other).squeeze() # batch x dim z_next = torch.einsum('sd, td -> st', f_next, b_next) # batch x batch z_next = z_next.detach() # the forward loss idxs = actions_tensor[:, None].repeat(1, self.args.embed_dim)[:, :, None] f = self.forward_network(obs_tensor, w).gather(-1, idxs).squeeze() b = self.backward_network(obs_tensor) b_other = self.backward_network(obs_other_tensor) # b = self.backward_network(obs_tensor).gather(-1, idxs).squeeze() # b_other = self.backward_network(obs_other_tensor).gather(-1, idxs_other).squeeze() z_diag = torch.einsum('sd, sd -> s', f, b) # batch z = torch.einsum('sd, td -> st', f, b_other) # batch x batch fb_loss = 0.5 * (z - self.args.gamma * z_next).pow(2).mean() - z_diag.mean() # compute orthonormality's regularisation loss b_b_other = torch.einsum('sd, xd -> sx', b, b_other) # batch x batch b_b_other_detach = torch.einsum('sd, xd -> sx', b, b_other.detach()) # batch x batch b_b_detach = torch.einsum('sd, sd -> s', b, b.detach()) # batch reg_loss = (b_b_detach * b_b_other.detach()).mean() - b_b_other_detach.mean() fb_loss += self.args.reg_coef * reg_loss # update the forward_network self.fb_optim.zero_grad() fb_loss.backward() # clip_grad_norm_(self.forward_network.parameters(), 5) self.fb_optim.step() return fb_loss.item(), entropy.item() # the backward loss # f = self.forward_network(obs_tensor, w).gather(-1, idxs).squeeze() # f = f.detach() # b = self.backward_network(obs_tensor) # b_other = self.backward_network(obs_other_tensor) # z_diag = torch.einsum('sd, sd -> s', f, b) # batch # z = torch.einsum('sd, td -> st', f, b_other) # batch x batch # b_loss = 0.5 * (z - self.args.gamma * z_next).pow(2).mean() - z_diag.mean() # # compute orthonormality's regularisation loss # b_b_other = torch.einsum('sd, xd -> sx', b, b_other) # batch x batch # b_b_other_detach = torch.einsum('sd, xd -> sx', b, b_other.detach()) # batch x batch # b_b_detach = torch.einsum('sd, sd -> s', b, b.detach()) # batch # reg_loss = (b_b_detach * b_b_other.detach()).mean() - b_b_other_detach.mean() # b_loss += self.args.reg_coef * reg_loss # # # update the backward_network # self.b_optim.zero_grad() # b_loss.backward() # clip_grad_norm_(self.backward_network.parameters(), 5) # self.b_optim.step() # do the evaluation def _eval_agent(self, num_gpi=20): total_perf = [] total_gpi_perf = [] for _ in range(self.args.n_test_rollouts): init_obs = self.env.reset() g = self.env.goal R = torch.tensor(self.env.R, dtype=torch.float32) P = torch.tensor(self.env.P, dtype=torch.float32) if self.args.cuda: R = R.cuda() P = P.cuda() opt_q = value_iteration(R, P, self.args.gamma, atol=1e-8, max_iteration=5000) opt_perf = opt_q[self.env.reachable_states].max(1)[0].mean() g_tensor = self._preproc_g(g) w = self.backward_network(g_tensor) pi = self.get_policy(w, policy_type='boltzmann', temp=1) sr_pi = compute_successor_reps(P, pi, self.args.gamma) q_pi = torch.matmul(sr_pi, R.t().reshape(self.env.state_space * self.env.action_space)) q_pi = q_pi.reshape(self.env.action_space, self.env.state_space).t() # score = torch.dot(q_pi[init_obs.argmax()], pi[init_obs.argmax()]) score = torch.einsum('sa, sa -> s', q_pi, pi)[self.env.reachable_states].mean() score /= opt_perf total_perf.append(score.item()) # with GPI if self.args.w_sampling == 'goal_oriented': transitions = self.buffer.sample(num_gpi) g_train = transitions['g'] g_train_tensor = torch.tensor(g_train, dtype=torch.float32) if self.args.cuda: g_train_tensor = g_train_tensor.cuda() w_train = self.backward_network(g_train_tensor) elif self.args.w_sampling == 'uniform_ball': w_train = self.sample_uniform_ball(num_gpi) elif self.args.w_sampling == 'cauchy_ball': w_train = w + self.sample_cauchy_ball(num_gpi) / np.sqrt(self.args.embed_dim) gpi_pi = self.get_gpi_policy(w_train, w, policy_type='boltzmann', temp=1) sr_gpi_pi = compute_successor_reps(P, gpi_pi, self.args.gamma) q_gpi_pi = torch.matmul(sr_gpi_pi, R.t().reshape(self.env.state_space * self.env.action_space)) q_gpi_pi = q_gpi_pi.reshape(self.env.action_space, self.env.state_space).t() # gpi_score = torch.dot(q_gpi_pi[init_obs.argmax()], gpi_pi[init_obs.argmax()]) gpi_score = torch.einsum('sa, sa -> s', q_gpi_pi, gpi_pi)[self.env.reachable_states].mean() gpi_score /= opt_perf total_gpi_perf.append(gpi_score.item()) total_perf = np.array(total_perf) total_gpi_perf = np.array(total_gpi_perf) return np.mean(total_perf), np.mean(total_gpi_perf)