Example #1
0
    def __init__(self, K, L, n, N, D, device):
        """
        Args: 
        K number of cluster
        L number of factors
        n number of cells
        N number of individuals
        D number of genes 

        W N x Ncells x D 
        
        q_A: 2 x D x L 
        q_gamma: 2x N x L 
        q_alpha: 2 x N x Ncells (roughly)
        q_beta: 2 x N x Ncells (roughly) <-- inverse gamma
        q_mu: 2 x K x D
        q_sigma:  2 x K x D <-- inverse gamma
        q_pi: N x K
        q_z: N x Ncells x K <-- phi_ijk
        """
        super(MFMM, self).__init__()
        self.name = "mfmm"

        self.K = K  # number of cluster
        self.L = L  # number of factors
        self.N = N  # number of individuals
        self.n = n  #number of cells per individual
        self.N_tot = n * N
        self.D = D
        self.epsilon = .001
        self.device = device
        '''

        q_A = torch.zeros(2, self.D, self.L)
        q_gamma = torch.zeros(2,self.N, self.L) 
        q_alpha = torch.zeros(2, self.N, self.n) 
        q_beta = torch.ones(2, self.N, self.n) 
        q_mu = torch.zeros(2, self.K, self.D)
        q_sigma = torch.ones(2,self.K, self.D)
        q_pi = torch.ones(self.N, self.K)
        phi = torch.ones(self.N, self.n, self.K) 
        '''
        q_A = ds.Normal(0., 1.).sample([2, self.D, self.L])
        q_gamma = ds.Normal(0., 1.).sample([2, self.N, self.L])
        q_alpha = ds.Normal(0., 1.).sample([2, self.N, self.n])
        q_beta = ds.Exponential(4.).sample([2, self.N, self.n])
        q_mu = ds.Normal(0., 1.).sample([2, self.K, self.D])
        q_sigma = ds.Exponential(4.).sample([2, self.K, self.D])
        q_pi = ds.Normal(0., 1.).sample([self.N, self.K])
        phi = ds.Normal(0., 1.).sample([self.N, self.n, self.K])

        self.q_A = nn.Parameter(q_A)
        self.q_gamma = nn.Parameter(q_gamma)
        self.q_alpha = nn.Parameter(q_alpha)
        self.q_beta = nn.Parameter(q_beta)
        self.q_mu = nn.Parameter(q_mu)
        self.q_sigma = nn.Parameter(q_sigma)
        self.q_pi = nn.Parameter(q_pi)
        self.phi = nn.Parameter(phi)
Example #2
0
def additive_exponential(alpha1, alpha2, h):
    """
    Samples from additive exponential process
    h is the number of layers
    alpha is the rate of the exponential distribution
    """
    g1 = dist.Exponential(torch.tensor([alpha1])).sample([1]).squeeze(0)
    g2 = dist.Exponential(torch.tensor([alpha2])).sample([h - 1]).squeeze()
    taus = torch.cat((g1, g1 + torch.cumsum(g2, dim=0)), 0)
    ##
    return taus
Example #3
0
    def __init__(self, K, V, M, M_val, p, alpha_fixed, device):
        """
        Args: 
        K: # topics, 
        V: Vocab size, 
        M: # docs,
        M_val: # val docs,
        p : switch prior
        alpha_fixed: if true fix alpha
        devcie: specify cpu or gpu
        """
        super(pfsLDA, self).__init__()
        self.name = "pfslda"
        self.K = K
        self.V = V
        self.M = M
        self.M_val = M_val
        self.epsilon = 0.0000001
        self.alpha_fixed = alpha_fixed
        self.device = device

        # model parameters
        alpha = (torch.ones(self.K).to(device)
                 if self.alpha_fixed else ds.Exponential(1).sample([self.K]))
        # beta stored pre-softmax (over V)
        beta = ds.Exponential(1).sample([self.K, self.V])
        beta = beta / beta.sum(dim=1, keepdim=True)
        # pi stored pre-softmax (over V)
        pi = ds.Exponential(1).sample([self.V])
        pi = pi / pi.sum()
        eta = ds.Normal(0, 1).sample([self.K])
        # delta stored pre-exponentiated
        delta = ds.Normal(0, 1).sample().abs()

        # variational parameters
        gamma = torch.ones(self.M, self.K)
        gamma_val = torch.ones(self.M_val, self.K)
        # phi stored pre softmax (over K)
        phi = torch.ones(self.M, self.K, self.V)
        phi_val = torch.ones(self.M_val, self.K, self.V)
        # varphi stored pre-sigmoid
        varphi = torch.ones(self.V) * p

        self.alpha = alpha if self.alpha_fixed else nn.Parameter(alpha)
        self.beta = nn.Parameter(beta)
        self.gamma = nn.Parameter(gamma)
        self.phi = nn.Parameter(phi)
        self.eta = nn.Parameter(eta)
        self.delta = nn.Parameter(delta)
        self.pi = nn.Parameter(pi)
        self.varphi = nn.Parameter(varphi)
        self.phi_val = nn.Parameter(phi_val)
        self.gamma_val = nn.Parameter(gamma_val)
        self.p = p
Example #4
0
def loss_normal2d_exponential(model_output, device, beta):
    # unpack the required quantities
    x_true = model_output["x_input"].permute(1, 0, 2)
    params = model_output["params"]
    rate = torch.exp(params)
    # sigma = torch.exp(logvar / 2)

    z_mu = model_output["z_mu"]
    z_log_var = model_output["z_log_var"]

    seq_length = rate.shape[0]
    # iterate over each time step in the sequence to compute NLL and KL terms

    t = 0
    # define the distribution
    p = distributions.Exponential(rate[t, :, :])
    log_prob = torch.sum(p.log_prob(x_true[t + 1, :, :]), dim=-1)
    # dimensions [batch_size, dimension]
    ones_vector = torch.ones((z_mu.shape[0], z_mu.shape[2])).to(device)
    # KL-divergence
    negative_kl = 0.5 * torch.sum(
        ones_vector + z_log_var[t, :, :] - z_mu[t, :, :]**2 -
        torch.exp(z_log_var[t, :, :]),
        dim=-1)

    # KL divergence through time
    kl_tt = -negative_kl

    for t in range(1, seq_length - 1):
        # define the distribution
        #        p = distributions.Normal(mu[:, t, :], sigma[:, t, :])
        #        p = distributions.LogNormal(mu[t, :, :], sigma[t, :, :])
        p = distributions.Exponential(rate[t, :, :])

        log_prob += torch.sum(p.log_prob(x_true[t + 1, :, :]), dim=-1)
        # KL-divergence
        negative_kl += 0.5 * torch.sum(ones_vector + z_log_var[t, :, :] -
                                       z_mu[t, :, :]**2 -
                                       torch.exp(z_log_var[t, :, :]))

        kl_tt -= negative_kl

    NLL, KL = -torch.mean(log_prob, dim=-1) / (seq_length - 1), torch.mean(
        kl_tt, dim=0) / (seq_length - 1)

    ELBO = NLL + beta * KL

    return {"loss": ELBO, "ELBO": ELBO, "NLL": NLL, "KL": KL}
Example #5
0
 def __init__(self, dataset_size=50000, pX=None):
     self.input_size = 2
     self.label_size = 1
     self.dataset_size = dataset_size
     self.base_dist = GaussianMixDistribution(pX=pX)
     self.X = self.base_dist.rsample(torch.Size([self.dataset_size]))
     self.weights_dist = D.Exponential(torch.tensor([1.0]))
Example #6
0
def get_robust_regression(device: torch.device) -> GetterReturnType:
    N = 10
    K = 10

    # X.shape: (N, K + 1), Y.shape: (N, 1)
    X = torch.rand(N, K + 1, device=device)
    Y = torch.rand(N, 1, device=device)

    # Predefined nu_alpha and nu_beta, nu_alpha.shape: (1, 1), nu_beta.shape: (1, 1)
    nu_alpha = torch.rand(1, 1, device=device)
    nu_beta = torch.rand(1, 1, device=device)
    nu = dist.Gamma(nu_alpha, nu_beta)

    # Predefined sigma_rate: sigma_rate.shape: (N, 1)
    sigma_rate = torch.rand(N, 1, device=device)
    sigma = dist.Exponential(sigma_rate)

    # Predefined beta_mean and beta_sigma: beta_mean.shape: (K + 1, 1), beta_sigma.shape: (K + 1, 1)
    beta_mean = torch.rand(K + 1, 1, device=device)
    beta_sigma = torch.rand(K + 1, 1, device=device)
    beta = dist.Normal(beta_mean, beta_sigma)

    nu_value = nu.sample()
    nu_value.requires_grad_(True)

    sigma_value = sigma.sample()
    sigma_unconstrained_value = sigma_value.log()
    sigma_unconstrained_value.requires_grad_(True)

    beta_value = beta.sample()
    beta_value.requires_grad_(True)

    def forward(nu_value: Tensor, sigma_unconstrained_value: Tensor, beta_value: Tensor) -> Tensor:
        sigma_constrained_value = sigma_unconstrained_value.exp()
        mu = X.mm(beta_value)

        # For this model, we need to compute the following three scores:
        # We need to compute the first and second gradient of this score with respect
        # to nu_value.
        nu_score = dist.StudentT(nu_value, mu, sigma_constrained_value).log_prob(Y).sum() \
            + nu.log_prob(nu_value)



        # We need to compute the first and second gradient of this score with respect
        # to sigma_unconstrained_value.
        sigma_score = dist.StudentT(nu_value, mu, sigma_constrained_value).log_prob(Y).sum() \
            + sigma.log_prob(sigma_constrained_value) \
            + sigma_unconstrained_value



        # We need to compute the first and second gradient of this score with respect
        # to beta_value.
        beta_score = dist.StudentT(nu_value, mu, sigma_constrained_value).log_prob(Y).sum() \
            + beta.log_prob(beta_value)

        return nu_score.sum() + sigma_score.sum() + beta_score.sum()

    return forward, (nu_value.to(device), sigma_unconstrained_value.to(device), beta_value.to(device))
Example #7
0
File: synth.py Project: sinead/NPL
 def __init__(self, dataset_size=50000, is_test=False):
     self.input_size = 2
     self.label_size = 1
     self.dataset_size = dataset_size
     self.base_dist = SynthDistribution(is_test=is_test)
     self.X, self.Y = self.base_dist.rsample(torch.Size([self.dataset_size
                                                         ]))
     self.X = self.X.view(self.X.shape[0], -1)
     self.weights_dist = D.Exponential(torch.tensor([1.0]))
Example #8
0
    def __init__(self,
                 ndim,
                 input_feat_dim,
                 hidden_dim1,
                 hidden_dim2,
                 dropout,
                 encsto='semi',
                 gdc='ip',
                 ndist='Bernoulli',
                 copyK=1,
                 copyJ=1,
                 device='cuda'):
        super(GCNModelSIGVAE, self).__init__()

        self.gce = GraphConvolution(ndim, hidden_dim1, dropout, act=F.relu)
        # self.gc0 = GraphConvolution(input_feat_dim, hidden_dim1, dropout, act=F.relu)
        self.gc1 = GraphConvolution(input_feat_dim,
                                    hidden_dim1,
                                    dropout,
                                    act=F.relu)
        self.gc2 = GraphConvolution(hidden_dim1,
                                    hidden_dim2,
                                    dropout,
                                    act=lambda x: x)
        self.gc3 = GraphConvolution(hidden_dim1,
                                    hidden_dim2,
                                    dropout,
                                    act=lambda x: x)
        self.encsto = encsto
        self.dc = GraphDecoder(hidden_dim2, dropout, gdc=gdc)
        self.device = device

        if ndist == 'Bernoulli':
            self.ndist = tdist.Bernoulli(torch.tensor([.5],
                                                      device=self.device))
        elif ndist == 'Normal':
            self.ndist == tdist.Normal(torch.tensor([0.], device=self.device),
                                       torch.tensor([1.], device=self.device))
        elif ndist == 'Exponential':
            self.ndist = tdist.Exponential(
                torch.tensor([1.], device=self.device))

        # K and J are defined in http://proceedings.mlr.press/v80/yin18b/yin18b-supp.pdf
        # Algorthm 1.
        self.K = copyK
        self.J = copyJ
        self.ndim = ndim

        # parameters in network gc1 and gce are NOT identically distributed, so we need to reweight the output
        # of gce() so that the effect of hiddenx + hiddene is equivalent to gc(x || e).
        self.reweight = ((self.ndim + hidden_dim1) /
                         (input_feat_dim + hidden_dim1))**(.5)
 def sigma(self) -> dist.Distribution:
     return dist.Exponential(1 / self.sigma_mean)
Example #10
0
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.distributions as dist
import matplotlib.pyplot as plt

from src.params_to_flat import params_to_flat

p = 2
n = 10
od = 1
dist_w = dist.Laplace(0, 0.1)
dist_o = dist.Exponential(1)

# number of samples
N = 10**3

# create parameters
xi = nn.Parameter(torch.zeros(n, p), requires_grad=True)
old_ig = None

# network
vmarg_l_1 = nn.Linear(p * n, 64)
vmarg_l_l2 = nn.Linear(64, 64)
vmarg_l_mu = nn.Linear(64, od)
vmarg_l_s = nn.Linear(64, int(od * (od + 1) / 2))
vmarg_nn_params = list(vmarg_l_1.parameters()) + list(
    vmarg_l_l2.parameters()) + list(vmarg_l_mu.parameters()) + list(
        vmarg_l_s.parameters())
Example #11
0
 def __init__(self, a):
     dist = dists.Exponential(a[0])
     super().__init__(dist, "exponential", 2, torch.tensor(0.), 1 / a[0])