def _inject_new_class(module: Module) -> None: r"""Sets up a module to be parametrized. This works by substituting the class of the module by a class that extends it to be able to inject a property Args: module (nn.Module): module into which to inject the property """ cls = module.__class__ def getstate(self): raise RuntimeError( "Serialization of parametrized modules is only " "supported through state_dict(). See:\n" "https://pytorch.org/tutorials/beginner/saving_loading_models.html" "#saving-loading-a-general-checkpoint-for-inference-and-or-resuming-training" ) param_cls = type( f"Parametrized{cls.__name__}", (cls,), { "__getstate__": getstate, }, ) module.__class__ = param_cls
def _inject_new_class(module: Module) -> None: r"""Sets up a module to be parametrized. This works by substituting the class of the module by a class that extends it to be able to inject a property Args: module (nn.Module): module into which to inject the property """ cls = module.__class__ def default_deepcopy(self, memo): # Just emulate a standard deepcopy procedure when __deepcopy__ doesn't exist in the current class. obj = memo.get(id(self), None) if obj is not None: return obj replica = self.__new__(self.__class__) memo[id(self)] = replica replica.__dict__ = deepcopy(self.__dict__, memo) # Also save all slots if they exist. slots_to_save = copyreg._slotnames( self.__class__) # type: ignore[attr-defined] for slot in slots_to_save: if hasattr(self, slot): setattr(replica, slot, deepcopy(getattr(self, slot), memo)) return replica def getstate(self): raise RuntimeError( "Serialization of parametrized modules is only " "supported through state_dict(). See:\n" "https://pytorch.org/tutorials/beginner/saving_loading_models.html" "#saving-loading-a-general-checkpoint-for-inference-and-or-resuming-training" ) dct = {"__getstate__": getstate} # We don't allow serialization of parametrized modules but should still allow deepcopying. # Default 'deepcopy' function invokes __deepcopy__ method instead of __getstate__ when it exists. if not hasattr(cls, "__deepcopy__"): dct["__deepcopy__"] = default_deepcopy # type: ignore[assignment] param_cls = type( f"Parametrized{cls.__name__}", (cls, ), dct, ) module.__class__ = param_cls
def remove_parametrizations( module: Module, tensor_name: str, leave_parametrized: bool = True ) -> Module: r"""Removes the parametrizations on a tensor in a module. - If ``leave_parametrized=True``, ``module[tensor_name]`` will be set to its current output. In this case, the parametrization shall not change the ``dtype`` of the tensor. - If ``leave_parametrized=False``, ``module[tensor_name]`` will be set to the unparametrised tensor in ``module.parametrizations[tensor_name].original``. This is only possible when the parametrization depends on just one tensor. Args: module (nn.Module): module from which remove the parametrization tensor_name (str): name of the parametrization to be removed leave_parametrized (bool, optional): leave the attribute :attr:`tensor_name` parametrized. Default: ``True`` Returns: Module: module Raises: ValueError: if ``module[tensor_name]`` is not parametrized ValueError: if ``leave_parametrized=False`` and the parametrization depends on several tensors """ if not is_parametrized(module, tensor_name): raise ValueError( f"Module {module} does not have a parametrization on {tensor_name}" ) # Fetch the original tensor assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy parametrizations = module.parametrizations[tensor_name] if parametrizations.is_tensor: original = parametrizations.original if leave_parametrized: with torch.no_grad(): t = getattr(module, tensor_name) # We know they have the same dtype because we have checked this when registering the # parametrizations. As such, we can use set_ # We do this so that the parameter does not to change the id() # This way the user does not need to update the optimizer with torch.no_grad(): original.set_(t) else: if leave_parametrized: # We cannot use no_grad because we need to know whether one or more # original tensors required grad t = getattr(module, tensor_name) # We'll have to trust the user to add it to the optimizer original = Parameter(t) if t.requires_grad else t else: raise ValueError( "Cannot leave unparametrized (`leave_parametrized=False`) a tensor " "that is parametrized in terms of a sequence of tensors." ) # Delete the property that manages the parametrization delattr(module.__class__, tensor_name) # Delete the ParametrizationList del module.parametrizations[tensor_name] # Restore the parameter / buffer into the main class _register_parameter_or_buffer(module, tensor_name, original) # Roll back the parametrized class if no other buffer or parameter # is currently parametrized in this class if not is_parametrized(module): delattr(module, "parametrizations") # Restore class orig_cls = module.__class__.__bases__[0] module.__class__ = orig_cls return module
def register_parametrization( module: Module, tensor_name: str, parametrization: Module, *, unsafe: bool = False, ) -> Module: r"""Adds a parametrization to a tensor in a module. Assume that ``tensor_name="weight"`` for simplicity. When accessing ``module.weight``, the module will return the parametrized version ``parametrization(module.weight)``. If the original tensor requires a gradient, the backward pass will differentiate through :attr:`parametrization`, and the optimizer will update the tensor accordingly. The first time that a module registers a parametrization, this function will add an attribute ``parametrizations`` to the module of type :class:`~ParametrizationList`. The list of parametrizations on the tensor ``weight`` will be accessible under ``module.parametrizations.weight``. The original tensor will be accessible under ``module.parametrizations.weight.original``. Parametrizations may be concatenated by registering several parametrizations on the same attribute. The training mode of a registered parametrization is updated on registration to match the training mode of the host module Parametrized parameters and buffers have an inbuilt caching system that can be activated using the context manager :func:`cached`. A :attr:`parametrization` may optionally implement a method with signature .. code-block:: python def right_inverse(self, X: Tensor) -> Union[Tensor, Sequence[Tensor]] This method is called on the unparametrized tensor when the first parametrization is registered to compute the initial value of the original tensor. If this method is not implemented, the original tensor will be just the unparametrized tensor. If all the parametrizations registered on a tensor implement `right_inverse` it is possible to initialize a parametrized tensor by assigning to it, as shown in the example below. It is possible for the first parametrization to depend on several inputs. This may be implemented returning a tuple of tensors from ``right_inverse`` (see the example implementation of a ``RankOne`` parametrization below). In this case, the unconstrained tensors are also located under ``module.parametrizations.weight`` with names ``original0``, ``original1``,... .. note:: If unsafe=False (default) both the forward and right_inverse methods will be called once to perform a number of consistency checks. If unsafe=True, then right_inverse will be called if the tensor is not parametrized, and nothing will be called otherwise. .. note:: In most situations, ``right_inverse`` will be a function such that ``forward(right_inverse(X)) == X`` (see `right inverse <https://en.wikipedia.org/wiki/Inverse_function#Right_inverses>`_). Sometimes, when the parametrization is not surjective, it may be reasonable to relax this. .. warning:: If a parametrization depends on several inputs, :func:`~register_parametrization` will register a number of new parameters. If such parametrization is registered after the optimizer is created, these new parameters will need to be added manually to the optimizer. See :meth:`torch.Optimizer.add_param_group`. Args: module (nn.Module): module on which to register the parametrization tensor_name (str): name of the parameter or buffer on which to register the parametrization parametrization (nn.Module): the parametrization to register Keyword args: unsafe (bool): a boolean flag that denotes whether the parametrization may change the dtype and shape of the tensor. Default: `False` Warning: the parametrization is not checked for consistency upon registration. Enable this flag at your own risk. Raises: ValueError: if the module does not have a parameter or a buffer named :attr:`tensor_name` Examples: >>> import torch >>> import torch.nn as nn >>> import torch.nn.utils.parametrize as P >>> >>> class Symmetric(nn.Module): >>> def forward(self, X): >>> return X.triu() + X.triu(1).T # Return a symmetric matrix >>> >>> def right_inverse(self, A): >>> return A.triu() >>> >>> m = nn.Linear(5, 5) >>> P.register_parametrization(m, "weight", Symmetric()) >>> print(torch.allclose(m.weight, m.weight.T)) # m.weight is now symmetric True >>> A = torch.rand(5, 5) >>> A = A + A.T # A is now symmetric >>> m.weight = A # Initialize the weight to be the symmetric matrix A >>> print(torch.allclose(m.weight, A)) True >>> class RankOne(nn.Module): >>> def forward(self, x, y): >>> # Form a rank 1 matrix multiplying two vectors >>> return x.unsqueeze(-1) @ y.unsqueeze(-2) >>> >>> def right_inverse(self, Z): >>> # Project Z onto the rank 1 matrices >>> U, S, Vh = torch.linalg.svd(Z, full_matrices=False) >>> # Return rescaled singular vectors >>> s0_sqrt = S[0].sqrt().unsqueeze(-1) >>> return U[..., :, 0] * s0_sqrt, Vh[..., 0, :] * s0_sqrt >>> >>> linear_rank_one = P.register_parametrization(nn.Linear(4, 4), "weight", RankOne()) >>> print(torch.linalg.matrix_rank(linear_rank_one.weight).item()) 1 """ parametrization.train(module.training) if is_parametrized(module, tensor_name): # Correctness checks. # If A is the space of tensors with shape and dtype equal to module.weight # we check that parametrization.forward and parametrization.right_inverse are # functions from A to A if not unsafe: Y = getattr(module, tensor_name) X = parametrization(Y) if not isinstance(X, Tensor): raise ValueError( f"A parametrization must return a tensor. Got {type(X).__name__}." ) if X.dtype != Y.dtype: raise ValueError( "Registering a parametrization may not change the dtype of the tensor, unless the `unsafe` flag is enabled.\n" f"module.{tensor_name}.dtype: {Y.dtype}\n" f"parametrization(module.{tensor_name}).dtype: {X.dtype}" ) if X.shape != Y.shape: raise ValueError( "Registering a parametrization may not change the shape of the tensor, unless the `unsafe` flag is enabled.\n" f"module.{tensor_name}.shape: {Y.shape}\n" f"parametrization(module.{tensor_name}).shape: {X.shape}" ) if hasattr(parametrization, "right_inverse"): try: Z = parametrization.right_inverse(X) # type: ignore[operator] except NotImplementedError: pass else: if not isinstance(Z, Tensor): raise ValueError( f"parametrization.right_inverse must return a tensor. Got: {type(Z).__name__}" ) if Z.dtype != Y.dtype: raise ValueError( "The tensor returned by parametrization.right_inverse must have the same dtype " f"as module.{tensor_name}, unless the `unsafe` flag is enabled.\n" f"module.{tensor_name}.dtype: {Y.dtype}\n" f"returned dtype: {Z.dtype}" ) if Z.shape != Y.shape: raise ValueError( "The tensor returned by parametrization.right_inverse must have the same shape " f"as module.{tensor_name}, unless the `unsafe` flag is enabled.\n" f"module.{tensor_name}.shape: {Y.shape}\n" f"returned shape: {Z.shape}" ) # else right_inverse is assumed to be the identity # add the new parametrization to the parametrization list assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy module.parametrizations[tensor_name].append(parametrization) # If unsafe was True in previous parametrization, keep it enabled module.parametrizations[tensor_name].unsafe |= unsafe # type: ignore[index, union-attr] elif tensor_name in module._buffers or tensor_name in module._parameters: # Set the parametrization mechanism # Fetch the original buffer or parameter original = getattr(module, tensor_name) # We create this early to check for possible errors parametrizations = ParametrizationList( [parametrization], original, unsafe=unsafe ) # Delete the previous parameter or buffer delattr(module, tensor_name) # If this is the first parametrization registered on the module, # we prepare the module to inject the property if not is_parametrized(module): # Change the class _inject_new_class(module) # Inject a ``ModuleDict`` into the instance under module.parametrizations module.parametrizations = ModuleDict() # Add a property into the class _inject_property(module, tensor_name) # Add a ParametrizationList assert isinstance(module.parametrizations, ModuleDict) # Make mypy happy module.parametrizations[tensor_name] = parametrizations else: raise ValueError( f"Module '{module}' does not have a parameter, a buffer, or a " f"parametrized element with name '{tensor_name}'" ) return module
def remove_parametrizations(module: Module, tensor_name: str, leave_parametrized: bool = True) -> Module: r"""Removes the parametrizations on a tensor in a module. - If ``leave_parametrized=True``, ``module[tensor_name]`` will be set to its current output. In this case, the parametrization shall not change the ``dtype`` of the tensor. - If ``leave_parametrized=False``, ``module[tensor_name]`` will be set to the unparametrised tensor in ``module.parametrizations[tensor_name].original``. Args: module (nn.Module): module from which remove the parametrization tensor_name (str): name of the parametrization to be removed leave_parametrized (bool, optional): leave the attribute :attr:`tensor_name` parametrized. Default: ``True`` Returns: Module: module Raises: ValueError: if ``module[tensor_name]`` is not parametrized ValueError: if ``leave_parametrized=True`` and the parametrization changes the size or dtype of the tensor """ if not is_parametrized(module, tensor_name): raise ValueError( "Module {} does not have a parametrization on {}".format( module, tensor_name)) # Fetch the original tensor original = module.parametrizations[tensor_name].original # type: ignore if leave_parametrized: t = getattr(module, tensor_name) # If they have the same dtype, we reuse the original tensor. # We do this so that the parameter does not to change the id() # This way the user does not need to update the optimizer if t.dtype == original.dtype: with torch.no_grad(): original.set_(t) else: raise ValueError( "The parametrization changes the dtype of the tensor from {} to {}. " "It is not supported to leave the tensor parametrized (`leave_parametrized=True`) " "in this case.".format(original.dtype, t.dtype)) # Delete the property that manages the parametrization delattr(module.__class__, tensor_name) # Delete the ParametrizationList del module.parametrizations[tensor_name] # type: ignore # Restore the parameter / buffer into the main class if isinstance(original, Parameter): module.register_parameter(tensor_name, original) else: module.register_buffer(tensor_name, original) # Roll back the parametrized class if no other buffer or parameter # is currently parametrized in this class if not is_parametrized(module): delattr(module, "parametrizations") # Restore class orig_cls = module.__class__.__bases__[0] module.__class__ = orig_cls return module
def register_parametrization(module: Module, tensor_name: str, parametrization: Module) -> Module: r"""Adds a parametrization to a tensor in a module. Assume that ``tensor_name="weight"`` for simplicity. When accessing ``module.weight``, the module will return the parametrized version ``parametrization(module.weight)``. If the original tensor requires a gradient, the backward pass will differentiate through the :attr:`parametrization`, and the optimizer will update the tensor accordingly. The first time that a module registers a parametrization, this function will add an attribute ``parametrizations`` to the module of type :class:`~ParametrizationList`. The list of parametrizations on a tensor will be accessible under ``module.parametrizations.weight``. The original tensor will be accessible under ``module.parametrizations.weight.original``. Parametrizations may be concatenated by registering several parametrizations on the same attribute. Parametrized parameters and buffers have an inbuilt caching system that can be activated using the context manager :func:`cached`. A :attr:`parametrization` may optionally implement a method with signature .. code-block:: python def right_inverse(self, X: Tensor) -> Tensor If :attr:`parametrization` implements this method, it will be possible to assign to the parametrized tensor. This may be used to initialize the tensor, as shown in the example. In most situations, ``right_inverse`` will be a function such that ``forward(right_inverse(X)) == X`` (see `right inverse <https://en.wikipedia.org/wiki/Inverse_function#Right_inverses>`_). Sometimes, when the parametrization is not surjective, it may be reasonable to relax this, as shown in the example below. Args: module (nn.Module): module on which to register the parametrization tensor_name (str): name of the parameter or buffer on which to register the parametrization parametrization (nn.Module): the parametrization to register Returns: Module: module Raises: ValueError: if the module does not have a parameter or a buffer named :attr:`tensor_name` Examples: >>> import torch >>> import torch.nn.utils.parametrize as P >>> >>> class Symmetric(torch.nn.Module): >>> def forward(self, X): >>> return X.triu() + X.triu(1).T # Return a symmetric matrix >>> >>> def right_inverse(self, A): >>> return A.triu() >>> >>> m = torch.nn.Linear(5, 5) >>> P.register_parametrization(m, "weight", Symmetric()) >>> print(torch.allclose(m.weight, m.weight.T)) # m.weight is now symmetric True >>> A = torch.rand(5, 5) >>> A = A + A.T # A is now symmetric >>> m.weight = A # Initialize the weight to be the symmetric matrix A >>> print(torch.allclose(m.weight, A)) True """ if is_parametrized(module, tensor_name): # Just add the new parametrization to the parametrization list module.parametrizations[tensor_name].append( parametrization) # type: ignore elif tensor_name in module._buffers or tensor_name in module._parameters: # Set the parametrization mechanism # Fetch the original buffer or parameter original = getattr(module, tensor_name) # Delete the previous parameter or buffer delattr(module, tensor_name) # If this is the first parametrization registered on the module, # we prepare the module to inject the property if not is_parametrized(module): # Change the class _inject_new_class(module) # Inject the a ``ModuleDict`` into the instance under module.parametrizations module.parametrizations = ModuleDict() # Add a property into the class _inject_property(module, tensor_name) # Add a ParametrizationList module.parametrizations[ tensor_name] = ParametrizationList( # type: ignore [parametrization], original) else: raise ValueError( "Module '{}' does not have a parameter, a buffer, or a " "parametrized element with name '{}'".format(module, tensor_name)) return module