Example #1
0
class lstmwrapper(nn.Module):
    def __init__(self,
                 input_size=66529,
                 output_size=5952,
                 hidden_size=52,
                 num_layers=16,
                 batch_first=True,
                 dropout=0.1):
        super(lstmwrapper, self).__init__()
        self.lstm = LSTM(input_size=input_size,
                         hidden_size=hidden_size,
                         num_layers=num_layers,
                         batch_first=batch_first,
                         dropout=dropout)
        self.output = nn.Linear(hidden_size, output_size)
        self.bn = nn.BatchNorm1d(input_size)
        self.reset_parameters()

    def reset_parameters(self):
        self.lstm.reset_parameters()
        self.output.reset_parameters()

    def forward(self, input, hx=None):
        input = self.bn(input)
        output, statetuple = self.lstm(input, hx)
        return self.output(output)
Example #2
0
class LSTM_vocab(nn.Module):
    def __init__(self,
                 vocab_size=50000,
                 vocab_embed_d=512,
                 output_size=12,
                 hidden_size=256,
                 *args,
                 **kwargs):
        super(LSTM_vocab, self).__init__()
        self.src_word_emb = nn.Embedding(vocab_size,
                                         vocab_embed_d,
                                         padding_idx=0)
        self.lstm = LSTM(input_size=vocab_embed_d,
                         hidden_size=hidden_size,
                         *args,
                         **kwargs)
        self.output = nn.Linear(hidden_size, output_size)
        self.reset_parameters()

    def reset_parameters(self):
        self.lstm.reset_parameters()
        self.output.reset_parameters()

    def forward(self, input, hx=None):
        input = self.src_word_emb(input)
        output, statetuple = self.lstm(input, hx)
        # this is a design decision that can be experimented with
        output = self.output(output)
        # output=torch.max(output,dim=1)[0]
        output = output[:, -1, :]
        return output
Example #3
0
class LSTMWrapper(nn.Module):
    def __init__(self, output_size=12, hidden_size=256, *args, **kwargs):
        super(LSTMWrapper, self).__init__()
        self.lstm = LSTM(hidden_size=hidden_size, *args, **kwargs)
        self.output = nn.Linear(hidden_size, output_size)
        self.reset_parameters()

    def reset_parameters(self):
        self.lstm.reset_parameters()
        self.output.reset_parameters()

    def forward(self, input, hx=None):
        output, statetuple = self.lstm(input, hx)
        # this is a design decision that can be experimented with
        output = self.output(output)
        # output=torch.max(output,dim=1)[0]
        output = output[:, -1, :]
        return output
Example #4
0
class lstmwrapperJ(nn.Module):
    def __init__(self,
                 input_size=52686,
                 output_size=2976,
                 hidden_size=128,
                 num_layers=16,
                 batch_first=True,
                 dropout=0.1):
        super(lstmwrapperJ, self).__init__()
        self.lstm = LSTM(input_size=input_size,
                         hidden_size=hidden_size,
                         num_layers=num_layers,
                         batch_first=batch_first,
                         dropout=dropout)
        self.bn = nn.BatchNorm1d(input_size)
        self.output = nn.Linear(hidden_size, output_size)
        self.reset_parameters()

        for name, param in self.named_parameters():
            print(name, param.data.shape)

    def reset_parameters(self):
        self.lstm.reset_parameters()
        self.output.reset_parameters()

    def forward(self, input, hx=None):
        input = input.permute(0, 2, 1).contiguous()
        try:
            bnout = self.bn(input)
            bnout[(bnout != bnout).detach()] = 0
        except ValueError:
            if step_input.shape[0] == 1:
                print("Somehow the batch size is one for this input")
                bnout = step_input
            else:
                raise
        input = bnout.permute(0, 2, 1).contiguous()
        output, statetuple = self.lstm(input, hx)
        output = self.output(output)
        # (batch_size, seq_len, target_dim)
        # pdb.set_trace()
        # output=output.sum(1)
        output = output.max(1)[0]
        return output
Example #5
0
class Stock_LSTM(nn.Module):
    """
    I prefer using this Stock LSTM for numerical stability.
    """
    def __init__(self, x, R, W, h, L, v_t):
        super(Stock_LSTM, self).__init__()

        self.x = x
        self.R = R
        self.W = W
        self.h = h
        self.L = L
        self.v_t= v_t

        self.LSTM=LSTM(input_size=self.x+self.R*self.W,hidden_size=h,num_layers=L,batch_first=True,
                       dropout=0.1)
        self.last=nn.Linear(self.h, self.v_t)
        self.st=None

    def forward(self, input_x):
        """
        :param input_x: input and memory values
        :return:
        """
        assert (self.st is not None)
        o, st = self.LSTM(input_x, self.st)
        if (st[0]!=st[0]).any():
            with open("debug/lstm.pkl") as f:
                pickle.dump(self, f)
            with open("debug/lstm.pkl") as f:
                pickle.dump(input_x, f)
            raise ("LSTM produced a NAN, objects dumped.")
        return self.last(o), st

    def reset_parameters(self):
        self.LSTM.reset_parameters()
        self.last.reset_parameters()

    def assign_states_tuple(self, states_tuple):
        self.st=states_tuple
Example #6
0
class PriorLSTM(nn.Module):
    def __init__(self,
                 prior,
                 input_size=52686,
                 output_size=2976,
                 hidden_size=128,
                 num_layers=16,
                 batch_first=True,
                 dropout=0.1):
        super(PriorLSTM, self).__init__()
        self.lstm = LSTM(input_size=input_size,
                         hidden_size=hidden_size,
                         num_layers=num_layers,
                         batch_first=batch_first,
                         dropout=dropout)
        self.bn = nn.BatchNorm1d(input_size)
        self.output = nn.Linear(hidden_size, output_size)
        self.reset_parameters()
        self.prior = prior
        '''prior'''
        # this is the prior probability of each label predicting true
        # this is added to the logit
        self.prior = prior
        if isinstance(self.prior, np.ndarray):
            self.prior = torch.from_numpy(self.prior).float()
            self.prior = Variable(self.prior, requires_grad=False)
        elif isinstance(self.prior, torch.Tensor):
            self.prior = Variable(self.prior, requires_grad=False)
        else:
            assert (isinstance(self.prior, Variable))

        # transform to logits
        # because we are using sigmoid, not softmax, self.prior=log(P(y))-log(P(not y))
        # sigmoid_input = z + self.prior
        # z = log(P(x|y)) - log(P(x|not y))
        # sigmoid output is the posterior positive
        self.prior = self.prior.clamp(1e-8, 1 - 1e-8)
        self.prior = torch.log(self.prior) - torch.log(1 - self.prior)
        a = Variable(torch.Tensor([0]))
        self.prior = torch.cat((a, self.prior))
        self.prior = self.prior.cuda()

        for name, param in self.named_parameters():
            print(name, param.data.shape)

        print("Using prior lstm")

    def reset_parameters(self):
        self.lstm.reset_parameters()
        self.output.reset_parameters()

    def forward(self, input, hx=None):
        input = input.permute(0, 2, 1).contiguous()
        bnout = self.bn(input)
        bnout[(bnout != bnout).detach()] = 0
        input = bnout.permute(0, 2, 1).contiguous()
        output, statetuple = self.lstm(input, hx)
        output = self.output(output)
        # (batch_size, seq_len, target_dim)
        # pdb.set_trace()
        # output=output.sum(1)
        output = output.max(1)[0]
        output = output + self.prior

        return output