Example #1
0
    def __init__(self, n_feat):
        super(Downsample, self).__init__()

        self.body = nn.Sequential(
            nn.Conv2d(n_feat,
                      n_feat // 2,
                      kernel_size=3,
                      stride=1,
                      padding=1,
                      bias=False), nn.PixelUnshuffle(2))
Example #2
0
 def __init__(self):
     super(NNVisionModule, self).__init__()
     self.input = torch.randn(1, 4, 9, 9)
     self.vision_modules = nn.ModuleList([
         nn.PixelShuffle(2),
         nn.PixelUnshuffle(3),
         nn.Upsample(scale_factor=2, mode="nearest"),
         nn.Upsample(scale_factor=2, mode="bilinear"),
         nn.Upsample(scale_factor=2, mode="bicubic"),
         nn.UpsamplingNearest2d(scale_factor=2),
         nn.UpsamplingBilinear2d(scale_factor=2),
     ])
     self.linear_sample = nn.Upsample(scale_factor=2, mode="linear")
     self.trilinear_sample = nn.Upsample(scale_factor=2, mode="trilinear")
Example #3
0
    def __init__(self):
        super(Model, self).__init__()

        self.down_0 = nn.PixelUnshuffle(2)
        self.down_1 = nn.PixelUnshuffle(4)
Example #4
0
 def __init__(self, r):
     super(PixelShuffle2d, self).__init__()
     self.r = r
     self.shuffle = nn.PixelShuffle(r)
     self.unshuffle = nn.PixelUnshuffle(r)