Example #1
0
def train():
    cfg = opt.cfg
    data = opt.data
    img_size, img_size_test = opt.img_size if len(
        opt.img_size) == 2 else opt.img_size * 2  # train, test sizes
    epochs = opt.epochs  # 500200 batches at bs 64, 117263 images = 273 epochs
    batch_size = opt.batch_size
    accumulate = opt.accumulate  # effective bs = batch_size * accumulate = 16 * 4 = 64
    weights = opt.weights  # initial training weights

    # Initialize
    init_seeds()
    if opt.multi_scale:
        img_sz_min = round(img_size / 32 / 1.5)
        img_sz_max = round(img_size / 32 * 1.5)
        img_size = img_sz_max * 32  # initiate with maximum multi_scale size
        print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))

    # Configure run
    data_dict = parse_data_cfg(data)
    train_path = '../../../DAC_vecq/train'
    test_path = '../../../dji_test'
    nc = 1

    # Remove previous results
    for f in glob.glob('*_batch*.png') + glob.glob(results_file):
        os.remove(f)

    # Initialize model
    # model = Darknet(cfg, arc=opt.arc).to(device)
    # model = UltraNetFloat640().to(device)
    # model = TempNet().to(device)
    # model = TempNetDW().to(device)
    # model = TempNetQua().to(device)
    # model = SqueezeNetQua().to(device)
    model = UltraNet().to(device)
    # model = UltraNet().to(device)

    # Optimizer
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in dict(model.named_parameters()).items():
        if '.bias' in k:
            pg2 += [v]  # biases
        elif 'Conv2d.weight' in k:
            pg1 += [v]  # apply weight_decay
        else:
            pg0 += [v]  # all else

    if opt.adam:
        # hyp['lr0'] *= 0.1  # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
        optimizer = optim.Adam(pg0, lr=hyp['lr0'])
        # optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    optimizer.param_groups[2]['lr'] *= 2.0  # bias lr
    del pg0, pg1, pg2

    start_epoch = 0
    best_fitness = 0.0
    test_best_iou = 0.0

    # attempt_download(weights)
    # 加载权重
    if weights.endswith('.pt'):  # pytorch format
        # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
        chkpt = torch.load(weights, map_location=device)

        # load model
        try:
            chkpt['model'] = {
                k: v
                for k, v in chkpt['model'].items()
                if model.state_dict()[k].numel() == v.numel()
            }
            model.load_state_dict(chkpt['model'], strict=False)
        except KeyError as e:
            s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " % (
                opt.weights, opt.cfg, opt.weights)
            raise KeyError(s) from e

        # load optimizer
        if chkpt['optimizer'] is not None:
            optimizer.load_state_dict(chkpt['optimizer'])
            best_fitness = chkpt['best_fitness']

        # load results
        if chkpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(chkpt['training_results'])  # write results.txt

        # start_epoch = chkpt['epoch'] + 1
        del chkpt

    elif len(weights) > 0:  # darknet format
        # possible weights are '*.weights', 'yolov3-tiny.conv.15',  'darknet53.conv.74' etc.
        load_darknet_weights(model, weights)

    # Scheduler https://github.com/ultralytics/yolov3/issues/238
    # lf = lambda x: 1 - x / epochs  # linear ramp to zero
    # lf = lambda x: 10 ** (hyp['lrf'] * x / epochs)  # exp ramp
    # lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs))  # inverse exp ramp
    lf = lambda x: (
        1 + math.cos(x * math.pi / epochs)
    ) / 2 * 0.99 + 0.01  # cosine https://arxiv.org/pdf/1812.01187.pdf
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(epochs * x) for x in [0.8, 0.9]], gamma=0.1)
    scheduler.last_epoch = start_epoch

    # # Plot lr schedule
    # y = []
    # for _ in range(epochs):
    #     scheduler.step()
    #     y.append(optimizer.param_groups[0]['lr'])
    # plt.plot(y, '.-', label='LambdaLR')
    # plt.xlabel('epoch')
    # plt.ylabel('LR')
    # plt.tight_layout()
    # plt.savefig('LR.png', dpi=300)

    # Initialize distributed training
    if device.type != 'cpu' and torch.cuda.device_count(
    ) > 1 and torch.distributed.is_available():
        dist.init_process_group(
            backend='nccl',  # 'distributed backend'
            init_method=
            'tcp://127.0.0.1:9999',  # distributed training init method
            world_size=1,  # number of nodes for distributed training
            rank=0)  # distributed training node rank
        model = torch.nn.parallel.DistributedDataParallel(
            model, find_unused_parameters=True)
        model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level

    # model = MyDataParallel(model)
    # model.yolo_layers = model.module.yolo_layers

    # Dataset
    dataset = LoadImagesAndLabels(
        train_path,
        img_size,
        batch_size,
        augment=True,
        hyp=hyp,  # augmentation hyperparameters
        rect=opt.rect,  # rectangular training
        cache_images=opt.cache_images,
        single_cls=opt.single_cls)

    # Dataloader
    batch_size = min(batch_size, len(dataset))
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0,
              8])  # number of workers
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        num_workers=nw,
        shuffle=not opt.
        rect,  # Shuffle=True unless rectangular training is used
        pin_memory=True,
        collate_fn=dataset.collate_fn)

    # Testloader
    testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(
        test_path,
        img_size_test,
        batch_size * 2,
        hyp=hyp,
        rect=False,
        cache_images=opt.cache_images,
        single_cls=opt.single_cls),
                                             batch_size=batch_size * 2,
                                             num_workers=nw,
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    # Start training
    nb = len(dataloader)
    prebias = start_epoch == 0
    model.nc = nc  # attach number of classes to model
    model.arc = opt.arc  # attach yolo architecture
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    maps = np.zeros(nc)  # mAP per class
    # torch.autograd.set_detect_anomaly(True)
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    t0 = time.time()
    torch_utils.model_info(model, report='summary')  # 'full' or 'summary'
    print('Using %g dataloader workers' % nw)
    print('Starting training for %g epochs...' % epochs)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()
        model.gr = 1 - (1 +
                        math.cos(min(epoch * 2, epochs) * math.pi /
                                 epochs)) / 2  # GIoU <-> 1.0 loss ratio

        # Prebias
        if prebias:
            ne = max(round(30 / nb), 3)  # number of prebias epochs
            ps = np.interp(epoch, [0, ne], [0.1, hyp['lr0'] * 2]), \
                 np.interp(epoch, [0, ne], [0.9, hyp['momentum']])  # prebias settings (lr=0.1, momentum=0.9)
            if epoch == ne:
                # print_model_biases(model)
                prebias = False

            # Bias optimizer settings
            optimizer.param_groups[2]['lr'] = ps[0]
            if optimizer.param_groups[2].get(
                    'momentum') is not None:  # for SGD but not Adam
                optimizer.param_groups[2]['momentum'] = ps[1]

        mloss = torch.zeros(4).to(device)  # mean losses
        print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls',
                                     'total', 'targets', 'img_size'))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device).float(
            ) / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
            targets = targets.to(device)

            # Hyperparameter burn-in
            # n_burn = nb - 1  # min(nb // 5 + 1, 1000)  # number of burn-in batches
            # if ni <= n_burn:
            #     for m in model.named_modules():
            #         if m[0].endswith('BatchNorm2d'):
            #             m[1].momentum = 1 - i / n_burn * 0.99  # BatchNorm2d momentum falls from 1 - 0.01
            #     g = (i / n_burn) ** 4  # gain rises from 0 - 1
            #     for x in optimizer.param_groups:
            #         x['lr'] = hyp['lr0'] * g
            #         x['weight_decay'] = hyp['weight_decay'] * g

            # Plot images with bounding boxes
            if ni < 1:
                f = 'train_batch%g.png' % i  # filename
                plot_images(imgs=imgs, targets=targets, paths=paths, fname=f)
                if tb_writer:
                    tb_writer.add_image(f,
                                        cv2.imread(f)[:, :, ::-1],
                                        dataformats='HWC')

            # Multi-Scale training
            if opt.multi_scale:
                if ni / accumulate % 1 == 0:  #  adjust img_size (67% - 150%) every 1 batch
                    img_size = random.randrange(img_sz_min,
                                                img_sz_max + 1) * 32
                sf = img_size / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [
                        math.ceil(x * sf / 32.) * 32 for x in imgs.shape[2:]
                    ]  # new shape (stretched to 16-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Run model
            pred = model(imgs)

            # Compute loss
            loss, loss_items = compute_loss(pred, targets, model)
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results

            # Scale loss by nominal batch_size of 64
            loss *= batch_size / 64

            loss.backward()

            # Optimize accumulated gradient
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()

            # Print batch results
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_cached() /
                             1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.3g' * 6) % ('%g/%g' %
                                               (epoch, epochs - 1), mem,
                                               *mloss, len(targets), img_size)
            pbar.set_description(s)

            # end batch ------------------------------------------------------------------------------------------------

        # Update scheduler
        scheduler.step()

        # Process epoch results
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            is_coco = any([
                x in data
                for x in ['coco.data', 'coco2014.data', 'coco2017.data']
            ]) and model.nc == 80
            results = test.test(
                cfg,
                data,
                batch_size=batch_size * 2,
                img_size=img_size_test,
                model=model,
                conf_thres=
                0.001,  # 0.001 if opt.evolve or (final_epoch and is_coco) else 0.01,
                iou_thres=0.6,
                save_json=final_epoch and is_coco,
                single_cls=opt.single_cls,
                dataloader=testloader)

        # Write epoch results
        with open(results_file, 'a') as f:
            f.write(s + '%10.3g' * len(results) % results +
                    '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp results.txt gs://%s/results/results%s.txt' %
                      (opt.bucket, opt.name))

        # Write Tensorboard results
        if tb_writer:
            x = list(mloss) + list(results)
            titles = [
                'GIoU', 'Objectness', 'Classification', 'Train loss', 'iou',
                'loss', 'Giou loss', 'obj loss'
            ]
            for xi, title in zip(x, titles):
                tb_writer.add_scalar(title, xi, epoch)

        # Update best mAP
        fi = fitness(np.array(results).reshape(
            1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        if fi > best_fitness:
            best_fitness = fi

        test_iou = results[0]
        if test_iou > test_best_iou:
            test_best_iou = test_iou

        # Save training results
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            with open(results_file, 'r') as f:
                # Create checkpoint
                chkpt = {
                    'epoch':
                    epoch,
                    'best_fitness':
                    best_fitness,
                    'training_results':
                    f.read(),
                    'model':
                    model.module.state_dict()
                    if type(model) is nn.parallel.DistributedDataParallel else
                    model.state_dict(),
                    'optimizer':
                    None if final_epoch else optimizer.state_dict()
                }

            # Save last checkpoint
            torch.save(chkpt, last)

            # Save best checkpoint
            if best_fitness == fi:
                torch.save(chkpt, best)

            if test_iou == test_best_iou:
                torch.save(chkpt, test_best)

            # Save backup every 10 epochs (optional)
            # if epoch > 0 and epoch % 10 == 0:
            #     torch.save(chkpt, wdir + 'backup%g.pt' % epoch)

            # Delete checkpoint
            del chkpt

        # end epoch ----------------------------------------------------------------------------------------------------

    # end training
    n = opt.name
    if len(n):
        n = '_' + n if not n.isnumeric() else n
        fresults, flast, fbest = 'results%s.txt' % n, 'last%s.pt' % n, 'best%s.pt' % n
        os.rename('results.txt', fresults)
        os.rename(wdir + 'last.pt', wdir +
                  flast) if os.path.exists(wdir + 'last.pt') else None
        os.rename(wdir + 'best.pt', wdir +
                  fbest) if os.path.exists(wdir + 'best.pt') else None
        if opt.bucket:  # save to cloud
            os.system('gsutil cp %s gs://%s/results' % (fresults, opt.bucket))
            os.system('gsutil cp %s gs://%s/weights' %
                      (wdir + flast, opt.bucket))
            # os.system('gsutil cp %s gs://%s/weights' % (wdir + fbest, opt.bucket))

    if not opt.evolve:
        plot_results()  # save as results.png
    print('%g epochs completed in %.3f hours.\n' % (epochs - start_epoch + 1,
                                                    (time.time() - t0) / 3600))
    dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
    torch.cuda.empty_cache()

    return results
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(
        colorstr("hyperparameters: ") + ", ".join(f"{k}={v}"
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = (
        Path(opt.save_dir),
        opt.epochs,
        opt.batch_size,
        opt.total_batch_size,
        opt.weights,
        opt.global_rank,
    )

    # Directories
    wdir = save_dir / "weights"
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / "last.pt"
    best = wdir / "best.pt"
    results_file = save_dir / "results.txt"

    # Save run settings
    with open(save_dir / "hyp.yaml", "w") as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / "opt.yaml", "w") as f:
        # yaml.dump(vars(opt), f, sort_keys=False)  # opt 実行パラメータ
        yaml.dump(str(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != "cpu"
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict["train"]
    test_path = data_dict["val"]
    nc = 1 if opt.single_cls else int(data_dict["nc"])  # number of classes
    names = (["item"] if opt.single_cls and len(data_dict["names"]) != 1 else
             data_dict["names"])  # class names
    assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
        len(names),
        nc,
        opt.data,
    )  # check

    # Model
    pretrained = weights.endswith(".pt")
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get("anchors"):
            ckpt["model"].yaml["anchors"] = round(
                hyp["anchors"])  # force autoanchor
        model = Model(opt.cfg or ckpt["model"].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ["anchor"] if opt.cfg or hyp.get("anchors") else [
        ]  # exclude keys
        state_dict = ckpt["model"].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            "Transferred %g/%g items from %s" %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print("freezing %s" % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp["weight_decay"] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp["lr0"],
                               betas=(hyp["momentum"],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp["lr0"],
                              momentum=hyp["momentum"],
                              nesterov=True)

    optimizer.add_param_group({
        "params": pg1,
        "weight_decay": hyp["weight_decay"]
    })  # add pg1 with weight_decay
    optimizer.add_param_group({"params": pg2})  # add pg2 (biases)
    logger.info("Optimizer groups: %g .bias, %g conv.weight, %g other" %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = (lambda x: (1 - x / (epochs - 1)) *
              (1.0 - hyp["lrf"]) + hyp["lrf"])  # linear
    else:
        lf = one_cycle(1, hyp["lrf"], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if rank in [-1, 0] and wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project="YOLOv5"
            if opt.project == "runs/train" else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get("wandb_id") if "ckpt" in locals() else None,
        )
    loggers = {"wandb": wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt["optimizer"] is not None:
            optimizer.load_state_dict(ckpt["optimizer"])
            best_fitness = ckpt["best_fitness"]

        # Results
        if ckpt.get("training_results") is not None:
            with open(results_file, "w") as file:
                file.write(ckpt["training_results"])  # write results.txt

        # Epochs
        start_epoch = ckpt["epoch"] + 1
        if opt.resume:
            assert (
                start_epoch > 0
            ), "%s training to %g epochs is finished, nothing to resume." % (
                weights,
                epochs,
            )
        if epochs < start_epoch:
            logger.info(
                "%s has been trained for %g epochs. Fine-tuning for %g additional epochs."
                % (weights, ckpt["epoch"], epochs))
            epochs += ckpt["epoch"]  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info("Using SyncBatchNorm()")

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=True,
        cache=opt.cache_images,
        rect=opt.rect,
        rank=rank,
        world_size=opt.world_size,
        workers=opt.workers,
        image_weights=opt.image_weights,
        quad=opt.quad,
        prefix=colorstr("train: "),
    )
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert (
        mlc < nc
    ), "Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g" % (
        mlc,
        nc,
        opt.data,
        nc - 1,
    )

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            batch_size * 2,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr("val: "),
        )[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram("classes", c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp["anchor_t"],
                              imgsz=imgsz)

    # Model parameters
    hyp["box"] *= 3.0 / nl  # scale to layers
    hyp["cls"] *= nc / 80.0 * 3.0 / nl  # scale to classes and layers
    hyp["obj"] *= (imgsz / 640)**2 * 3.0 / nl  # scale to image size and layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = (
        labels_to_class_weights(dataset.labels, nc).to(device) * nc
    )  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp["warmup_epochs"] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f"Image sizes {imgsz} train, {imgsz_test} test\n"
                f"Using {dataloader.num_workers} dataloader workers\n"
                f"Logging results to {save_dir}\n"
                f"Starting training for {epochs} epochs...")
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = (model.class_weights.cpu().numpy() * (1 - maps)**2 / nc
                      )  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ("\n" + "%10s" * 8) % ("Epoch", "gpu_mem", "box", "obj", "cls",
                                   "total", "targets", "img_size"))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs,
                targets,
                paths,
                _,
        ) in (
                pbar
        ):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = (imgs.to(device, non_blocking=True).float() / 255.0
                    )  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(
                        ni,
                        xi,
                        [
                            hyp["warmup_bias_lr"] if j == 2 else 0.0,
                            x["initial_lr"] * lf(epoch),
                        ],
                    )
                    if "momentum" in x:
                        x["momentum"] = np.interp(
                            ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode="bilinear",
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= (opt.world_size
                             )  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.0

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = "%.3gG" % (torch.cuda.memory_reserved() / 1e9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ("%10s" * 2 + "%10.4g" * 6) % (
                    "%g/%g" % (epoch, epochs - 1),
                    mem,
                    *mloss,
                    targets.shape[0],
                    imgs.shape[-1],
                )
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f"train_batch{ni}.jpg"  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 10 and wandb:
                    wandb.log(
                        {
                            "Mosaics": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob("train*.jpg")
                                if x.exists()
                            ]
                        },
                        commit=False,
                    )

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x["lr"] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=[
                        "yaml",
                        "nc",
                        "hyp",
                        "gr",
                        "names",
                        "stride",
                        "class_weights",
                    ],
                )
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=batch_size * 2,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    verbose=nc < 50 and final_epoch,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0,
                    compute_loss=compute_loss,
                )

            # Write
            with open(results_file, "a") as f:
                f.write(
                    s + "%10.4g" * 7 % results +
                    "\n")  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system("gsutil cp %s gs://%s/results/results%s.txt" %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                "train/box_loss",
                "train/obj_loss",
                "train/cls_loss",  # train loss
                "metrics/precision",
                "metrics/recall",
                "metrics/mAP_0.5",
                "metrics/mAP_0.5:0.95",
                "val/box_loss",
                "val/obj_loss",
                "val/cls_loss",  # val loss
                "x/lr0",
                "x/lr1",
                "x/lr2",
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x}, step=epoch,
                              commit=tag == tags[-1])  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, "r") as f:  # create checkpoint
                    ckpt = {
                        "epoch":
                        epoch,
                        "best_fitness":
                        best_fitness,
                        "training_results":
                        f.read(),
                        "model":
                        ema.ema,
                        "optimizer":
                        None if final_epoch else optimizer.state_dict(),
                        "wandb_id":
                        wandb_run.id if wandb else None,
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in [last, best]:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f"gsutil cp {final} gs://{opt.bucket}/weights")  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    "results.png",
                    "confusion_matrix.png",
                    *[f"{x}_curve.png" for x in ("F1", "PR", "P", "R")],
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
                if opt.log_artifacts:
                    wandb.log_artifact(artifact_or_path=str(final),
                                       type="model",
                                       name=save_dir.stem)

        # Test best.pt
        logger.info("%g epochs completed in %.3f hours.\n" %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith("coco.yaml") and nc == 80:  # if COCO
            for conf, iou, save_json in (
                [0.25, 0.45, False],
                [0.001, 0.65, True],
            ):  # speed, mAP tests
                results, _, _ = test.test(
                    opt.data,
                    batch_size=batch_size * 2,
                    imgsz=imgsz_test,
                    conf_thres=conf,
                    iou_thres=iou,
                    model=attempt_load(final, device).half(),
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    save_json=save_json,
                    plots=False,
                )

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()

    # mlflow
    with mlflow.start_run() as run:
        # Log args into mlflow
        for key, value in hyp.items():
            mlflow.log_param(key, value)

        for key, value in vars(opt).items():
            mlflow.log_param(key, value)

        # Log results into mlflow
        for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
            # xがtorch.Tensorだったらfloatに直す
            if torch.is_tensor(x):
                x = x.item()

            # tag名に特殊記号があれば削除する
            if ":" in tag:
                tag = re.sub(r":", " ", tag)

            mlflow.log_metric(tag, x)

        # Log model
        mlflow.pytorch.log_model(model, "model")

    return results
Example #3
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = [
        '',
    ]  # parameter names to freeze (full or partial)
    if any(freeze):
        for k, v in model.named_parameters():
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        v.requires_grad = True
        if '.bias' in k:
            pg2.append(v)  # biases
        elif '.weight' in k and '.bn' not in k:
            pg1.append(v)  # apply weight decay
        else:
            pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            plot_labels(labels, save_dir=log_dir)
            if tb_writer:
                # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
                tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info(
        'Image sizes %g train, %g test\nUsing %g dataloader workers\nLogging results to %s\n'
        'Starting training for %g epochs...' %
        (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(log_dir / ('train_batch%g.jpg' % ni))  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    if tb_writer and result is not None:
                        tb_writer.add_image(f,
                                            result,
                                            dataformats='HWC',
                                            global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                if final_epoch:  # replot predictions
                    [
                        os.remove(x) for x in glob.glob(
                            str(log_dir / 'test_batch*_pred.jpg'))
                        if os.path.exists(x)
                    ]
                results, maps, times = test.test(opt.data,
                                                 batch_size=total_batch_size,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=log_dir)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = [
                    'train/giou_loss',
                    'train/obj_loss',
                    'train/cls_loss',  # train loss
                    'metrics/precision',
                    'metrics/recall',
                    'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95',
                    'val/giou_loss',
                    'val/obj_loss',
                    'val/cls_loss',  # val loss
                    'x/lr0',
                    'x/lr1',
                    'x/lr2'
                ]  # params
                for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict()
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Example #4
0
def train(options):
    if not os.path.exists(options.checkpoint_dir):
        os.system("mkdir -p %s" % options.checkpoint_dir)
        pass
    if not os.path.exists(options.test_dir):
        os.system("mkdir -p %s" % options.test_dir)
        pass

    batch_size = options.batchSize
    epochs = options.numEpochs
    accumulate = options.accumulate  # effective bs = batch_size * accumulate = 13 * 4 = 52
    opt_img_size = options.imgSize
    opt_img_size.extend([options.imgSize[-1]] * (3 - len(options.imgSize)))
    imgsz_min, imgsz_max, imgsz_test = opt_img_size  # img sizes (min, max, test)

    # Image Sizes
    # gs = 52  # (pixels) grid size
    # assert math.fmod(imgsz_min, gs) == 0, '--img-size %g must be a %g-multiple' % (imgsz_min, gs)
    # options.multiScale |= imgsz_min != imgsz_max  # multi if different (min, max)
    # if options.multiScale:
    #     if imgsz_min == imgsz_max:
    #         imgsz_min //= 1.5
    #         imgsz_max //= 0.667
    #     grid_min, grid_max = imgsz_min // gs, imgsz_max // gs
    #     imgsz_min, imgsz_max = grid_min * gs, grid_max * gs
    img_size = imgsz_max  # initialize with max size

    init_seeds(seed=30)

    # Remove previous results
    results_file = 'yolo_results.txt'
    for f in glob.glob('*_batch*.png') + glob.glob(results_file):
        os.remove(f)

    yolo_config = options.cfg
    rcnn_config = PlaneConfig(options)

    data = options.data
    data_dict = parse_data_cfg(data)
    train_path = data_dict['train']
    test_path = data_dict['valid']
    nc = int(data_dict['classes'])  # number of classes
    hyp['cls'] *= nc / 80  # update coco-tuned hyp['cls'] to current dataset

    # Dataset
    dataset = LoadImagesAndLabels(
        options,
        rcnn_config,
        train_path,
        img_size,
        batch_size,
        augment=False,
        hyp=hyp,  # augmentation hyperparameters
        rect=options.rect  # rectangular training
    )

    # # Dataloader
    nw = 4  # number of workers
    dataloader = DataLoader(
        dataset,
        batch_size=batch_size,
        num_workers=nw,
        shuffle=not options.
        rect,  # Shuffle=True unless rectangular training is used
        pin_memory=True,
        collate_fn=dataset.collate_fn)

    # # Testloader
    # testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, imgsz_test, batch_size,
    #                                                              hyp=hyp,
    #                                                              rect=True,
    #                                                              cache_images=opt.cache_images,
    #                                                              single_cls=opt.single_cls),
    #                                          batch_size=batch_size,
    #                                          num_workers=nw,
    #                                          pin_memory=True,
    #                                          collate_fn=dataset.collate_fn)
    #

    model = POD_Model(yolo_config, rcnn_config, options)
    # refine_model = RefineModel(options)
    print(model.eval())
    model.cuda()
    model.train()
    # refine_model.cuda()
    # refine_model.train()

    # refine_model.load_state_dict(torch.load(options.checkpoint_dir + '/checkpoint_refine.pth'))

    start_epoch = 0
    best_fitness = 0.0

    # opt.weights = last if opt.resume else opt.weights
    wdir = 'weights' + os.sep  # yolo weights dir
    # last = wdir + 'last.pt'
    # best = wdir + 'best.pt'

    midas_state_dict = torch.hub.load_state_dict_from_url(
        "https://github.com/intel-isl/MiDaS/releases/download/v2/model-f46da743.pt",
        progress=True,
        check_hash=True)

    model.encoder.load_state_dict(midas_state_dict, strict=False)
    model.decoder1.load_state_dict(midas_state_dict, strict=False)

    chkpt = torch.load('weights/last2.pt')
    yolo_extract = dict()
    for k, v in chkpt['model'].items():
        module_key = k.split('.')
        if int(module_key[1]) > 74:
            module_key[1] = str(int(module_key[1]) - 75)
            yolo_extract['.'.join(module_key)] = v

    model.decoder2.load_state_dict(yolo_extract, strict=False)

    rcnn_state_dict = torch.load(options.checkpoint_dir + '/checkpoint.pth')
    for key in list(rcnn_state_dict.keys()):
        if key.startswith('fpn.C'):
            del rcnn_state_dict[key]

    model.decoder3.load_state_dict(rcnn_state_dict, strict=False)
    model.decoder3.set_trainable(
        r"(fpn.P5\_.*)|(fpn.P4\_.*)|(fpn.P3\_.*)|(fpn.P2\_.*)|(rpn.*)|(classifier.*)|(mask.*)"
    )

    if chkpt['optimizer'] is not None:
        # optimizer.load_state_dict(chkpt['optimizer'])
        best_fitness = chkpt['best_fitness']

    # # load results
    # if chkpt.get('training_results') is not None:
    #     with open(results_file, 'w') as file:
    #         file.write(chkpt['training_results'])  # write results.txt

    del chkpt
    del yolo_extract
    del midas_state_dict
    del rcnn_state_dict

    # model_names = [name for name, param in model.named_parameters()]
    # for name, param in refine_model.named_parameters():
    #     assert(name not in model_names)
    #     continue

    # Optimizer
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in dict(model.named_parameters()).items():
        if v.requires_grad:
            if '.bias' in k:
                pg2 += [v]  # biases
            elif 'Conv2d.weight' in k or 'conv' in k or 'merge1.0' in k or 'merge2.0' in k or 'merge3.0' in k:
                pg1 += [v]  # apply weight_decay
            else:
                pg0 += [v]  # all else

    optimizer = optim.SGD(pg0,
                          lr=hyp['lr0'],
                          momentum=hyp['momentum'],
                          nesterov=True)
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    # optimizer.add_param_group({'params': refine_model.parameters()})
    del pg0, pg1, pg2

    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.95 + 0.05  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer,
                                      lr_lambda=lf,
                                      last_epoch=start_epoch - 1)

    # Loss
    l1_criterion = nn.L1Loss()

    # Model parameters for YOLO
    model.decoder2.nc = nc  # attach number of classes to model
    model.decoder2.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.decoder2.gr = model.gr
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).cuda()  # attach class weights

    # Model EMA
    ema = torch_utils.ModelEMA(model)

    # Start training
    nb = len(dataloader)  # number of batches
    print("Numbers of Batches: ", nb)
    n_burn = max(3 * nb,
                 500)  # burn-in iterations, max(3 epochs, 500 iterations)
    maps = np.zeros(nc)  # mAP per class
    # torch.autograd.set_detect_anomaly(True)
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    t0 = time.time()
    print('Image sizes %g - %g train, %g test' %
          (imgsz_min, imgsz_max, imgsz_test))
    print('Using %g dataloader workers' % nw)
    print('Starting training for %g epochs...' % epochs)

    for epoch in range(start_epoch, epochs):
        model.train()

        mloss = torch.zeros(4).cuda()  # mean losses
        print(('\n' + '%12s' * 10) %
              ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'yolo_loss',
               'targets', 'img_size', 'depth_loss', 'plane_loss'))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for i, (imgs, targets, paths, shapes, planedata) in pbar:
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.cuda().float(
            ) / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
            targets = targets.cuda()

            # Burn-in
            if ni <= n_burn * 2:
                model.gr = np.interp(
                    ni, [0, n_burn * 2],
                    [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                model.decoder2.gr = model.gr
                if ni == n_burn:  # burnin complete
                    print_model_biases(model)

                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, [0, n_burn],
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, [0, n_burn],
                                                  [0.9, hyp['momentum']])

            # # Multi-Scale training
            # if opt.multi_scale:
            #     if ni / accumulate % 1 == 0:  #  adjust img_size (67% - 150%) every 1 batch
            #         img_size = random.randrange(grid_min, grid_max + 1) * gs
            #     sf = img_size / max(imgs.shape[2:])  # scale factor
            #     if sf != 1:
            #         ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to 32-multiple)
            #         imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Run model
            midas_out, yolo_out, plane_out = model(imgs, planedata)

            plane_losses = []
            depth_losses = []
            for batch_idx in range(len(planedata)):
                rpn_match = planedata[batch_idx][2].cuda()
                rpn_bbox = planedata[batch_idx][3].cuda()
                gt_depth = torch.from_numpy(planedata[batch_idx][8]).cuda()

                rpn_class_logits, rpn_pred_bbox, target_class_ids, mrcnn_class_logits, target_deltas, mrcnn_bbox, target_mask, mrcnn_mask, target_parameters, mrcnn_parameters, detections, detection_masks, detection_gt_parameters, detection_gt_masks, rpn_rois, roi_features, roi_indices, feature_map, depth_np_pred = plane_out[
                    batch_idx]

                ## Plane losses
                rpn_class_loss, rpn_bbox_loss, mrcnn_class_loss, mrcnn_bbox_loss, mrcnn_mask_loss, mrcnn_parameter_loss = compute_losses(
                    rcnn_config, rpn_match.unsqueeze(0), rpn_bbox.unsqueeze(0),
                    rpn_class_logits, rpn_pred_bbox, target_class_ids,
                    mrcnn_class_logits, target_deltas, mrcnn_bbox, target_mask,
                    mrcnn_mask, target_parameters, mrcnn_parameters)

                plane_losses += [
                    rpn_class_loss + rpn_bbox_loss + mrcnn_class_loss +
                    mrcnn_bbox_loss + mrcnn_mask_loss + mrcnn_parameter_loss
                ]

                ### Midas losses
                l_depth = l1_criterion(midas_out[batch_idx], gt_depth)
                # l_ssim = torch.clamp((1 - ssim(midas_out[batch_idx].unsqueeze(0).unsqueeze(0), gt_depth.unsqueeze(0).unsqueeze(0), val_range = 1000.0 / 10.0)) * 0.5, 0, 1)
                l_mse = F.mse_loss(midas_out[batch_idx], gt_depth)
                d_loss = (1.0 * l_mse) + (1.0 * l_depth)
                depth_losses += [d_loss]

                gt_depth = gt_depth.unsqueeze(0)
                depth_np_loss = l1LossMask(
                    depth_np_pred[:, 80:560], gt_depth[:, 80:560],
                    (gt_depth[:, 80:560] > 1e-4).float())
                plane_losses.append(depth_np_loss)
                normal_np_pred = None

            plane_batch_loss = sum(plane_losses)
            depth_batch_loss = sum(depth_losses)

            ### Yolo loss
            yolo_loss, loss_items = compute_loss(yolo_out, targets,
                                                 model.decoder2)
            # if not torch.isfinite(yolo_loss):
            #     print('WARNING: non-finite loss, ending training ', loss_items)
            #     return results

            # Scale loss by nominal batch_size of 64
            yolo_loss *= batch_size / 64
            total_loss = depth_batch_loss + yolo_loss + plane_batch_loss
            # Compute gradient
            total_loss.backward()

            # Optimize accumulated gradient
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                ema.update(model)

            # Print batch results
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_reserved() /
                             1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%12s' * 2 + '%12.3g' * 8) % (
                '%g/%g' % (epoch + 1, epochs), mem, *mloss, len(targets),
                img_size, depth_batch_loss, plane_batch_loss)
            pbar.set_description(s)

            # Plot images with bounding boxes
            # if ni < 1:
            #     f = 'train_batch%g.png' % i  # filename
            #     plot_images(imgs=imgs, targets=targets, paths=paths, fname=f)
            # if tb_writer:
            #     tb_writer.add_image(f, cv2.imread(f)[:, :, ::-1], dataformats='HWC')
            # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Update scheduler
        scheduler.step()

        # # Process epoch results
        ema.update_attr(model)
        final_epoch = epoch + 1 == epochs
        # if not opt.notest or final_epoch:  # Calculate mAP
        #     is_coco = any([x in data for x in ['coco.data', 'coco2014.data', 'coco2017.data']]) and model.nc == 80
        #     results, maps = test.test(cfg,
        #                               data,
        #                               batch_size=batch_size,
        #                               img_size=imgsz_test,
        #                               model=ema.ema,
        #                               save_json=final_epoch and is_coco,
        #                               single_cls=opt.single_cls,
        #                               dataloader=testloader)
        #
        # # Write epoch results
        # with open(results_file, 'a') as f:
        #     f.write(s + '%10.3g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)

        # # Update best mAP
        # fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        # if fi > best_fitness:
        #     best_fitness = fi

        # Save training results
        save = (not options.nosave) or (final_epoch)
        if save:
            # with open(results_file, 'r') as f:
            #     # Create checkpoint
            #     _chkpt = {'epoch': epoch,
            #              'best_fitness': best_fitness,
            #              'training_results': f.read(),
            #              'model': ema.ema.module.state_dict() if hasattr(model, 'module') else ema.ema.state_dict(),
            #              'optimizer': None if final_epoch else optimizer.state_dict()}

            # Save last checkpoint
            torch.save(model.state_dict(), wdir + 'last_wt.pt')

            # Save best checkpoint
            # if (best_fitness == fi) and not final_epoch:
            #     torch.save(_chkpt, best)

            # Save backup every 10 epochs (optional)
            # if epoch > 0 and epoch % 10 == 0:
            #     torch.save(_chkpt, wdir + 'backup%g.pt' % epoch)

            # Delete checkpoint
            # del _chkpt

        # end epoch ----------------------------------------------------------------------------------------------------

    # plot_results()
    print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1,
                                                    (time.time() - t0) / 3600))
    torch.cuda.empty_cache()
Example #5
0
def train(hyp):
    epochs = opt.epochs  # 300
    batch_size = opt.batch_size  # 64
    weights = opt.weights  # initial training weights

    # Configure
    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes

    # Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

    # Create model
    model = Model(opt.cfg).to(device)
    assert model.md['nc'] == nc, '%s nc=%g classes but %s nc=%g classes' % (
        opt.data, nc, opt.cfg, model.md['nc'])

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    optimizer = optim.Adam(pg0, lr=hyp['lr0']) if opt.adam else \
        optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Load Model
    google_utils.attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0
    if weights.endswith('.pt'):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            ckpt['model'] = {
                k: v
                for k, v in ckpt['model'].float().state_dict().items()
                if model.state_dict()[k].shape == v.shape
            }  # to FP32, filter
            model.load_state_dict(ckpt['model'], strict=False)
        except KeyError as e:
            s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s." \
                % (opt.weights, opt.cfg, opt.weights)
            raise KeyError(s) from e

        # load optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        start_epoch = ckpt['epoch'] + 1
        del ckpt

    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level='O1',
                                          verbosity=0)

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.9 + 0.1  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    scheduler.last_epoch = start_epoch - 1  # do not move
    # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Initialize distributed training
    if device.type != 'cpu' and torch.cuda.device_count(
    ) > 1 and torch.distributed.is_available():
        dist.init_process_group(
            backend='nccl',  # distributed backend
            init_method='tcp://127.0.0.1:9999',  # init method
            world_size=1,  # number of nodes
            rank=0)  # node rank
        model = torch.nn.parallel.DistributedDataParallel(model)

    # Dataset
    dataset = LoadImagesAndLabels(
        train_path,
        imgsz,
        batch_size,
        augment=True,
        hyp=hyp,  # augmentation hyperparameters
        rect=opt.rect,  # rectangular training
        cache_images=opt.cache_images,
        single_cls=opt.single_cls)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (
        mlc, nc, opt.cfg)

    # Dataloader
    batch_size = min(batch_size, len(dataset))
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0,
              8])  # number of workers
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        num_workers=nw,
        shuffle=not opt.
        rect,  # Shuffle=True unless rectangular training is used
        pin_memory=True,
        collate_fn=dataset.collate_fn)

    # Testloader
    testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(
        test_path,
        imgsz_test,
        batch_size,
        hyp=hyp,
        rect=True,
        cache_images=opt.cache_images,
        single_cls=opt.single_cls),
                                             batch_size=batch_size,
                                             num_workers=nw,
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = data_dict['names']

    # Class frequency
    labels = np.concatenate(dataset.labels, 0)
    c = torch.tensor(labels[:, 0])  # classes
    # cf = torch.bincount(c.long(), minlength=nc) + 1.
    # model._initialize_biases(cf.to(device))
    if tb_writer:
        plot_labels(labels)
        tb_writer.add_histogram('classes', c, 0)

    # Check anchors
    check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

    # Exponential moving average
    ema = torch_utils.ModelEMA(model)

    # Start training
    t0 = time.time()
    nb = len(dataloader)  # number of batches
    n_burn = max(3 * nb,
                 1e3)  # burn-in iterations, max(3 epochs, 1k iterations)
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
    print('Using %g dataloader workers' % nw)
    print('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            w = model.class_weights.cpu().numpy() * (1 -
                                                     maps)**2  # class weights
            image_weights = labels_to_image_weights(dataset.labels,
                                                    nc=nc,
                                                    class_weights=w)
            dataset.indices = random.choices(range(dataset.n),
                                             weights=image_weights,
                                             k=dataset.n)  # rand weighted idx

        mloss = torch.zeros(4, device=device)  # mean losses
        print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls',
                                     'total', 'targets', 'img_size'))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device).float(
            ) / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0

            # Burn-in
            if ni <= n_burn:
                xi = [0, n_burn]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss(pred, targets.to(device), model)
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results

            # Backward
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Optimize
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_cached() /
                             1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1),
                                               mem, *mloss, targets.shape[0],
                                               imgs.shape[-1])
            pbar.set_description(s)

            # Plot
            if ni < 3:
                f = 'train_batch%g.jpg' % i  # filename
                res = plot_images(images=imgs,
                                  targets=targets,
                                  paths=paths,
                                  fname=f)
                if tb_writer:
                    tb_writer.add_image(f,
                                        res,
                                        dataformats='HWC',
                                        global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # mAP
        ema.update_attr(model)
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            results, maps, times = test.test(
                opt.data,
                batch_size=batch_size,
                imgsz=imgsz_test,
                save_json=final_epoch
                and opt.data.endswith(os.sep + 'coco.yaml'),
                model=ema.ema,
                single_cls=opt.single_cls,
                dataloader=testloader,
                fast=epoch < epochs / 2)

        # Write
        with open(results_file, 'a') as f:
            f.write(s + '%10.4g' * 7 % results +
                    '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp results.txt gs://%s/results/results%s.txt' %
                      (opt.bucket, opt.name))

        # Tensorboard
        if tb_writer:
            tags = [
                'train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5',
                'metrics/F1', 'val/giou_loss', 'val/obj_loss', 'val/cls_loss'
            ]
            for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                tb_writer.add_scalar(tag, x, epoch)

        # Update best mAP
        fi = fitness(np.array(results).reshape(
            1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            with open(results_file, 'r') as f:  # create checkpoint
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'training_results': f.read(),
                    'model':
                    ema.ema.module if hasattr(model, 'module') else ema.ema,
                    'optimizer':
                    None if final_epoch else optimizer.state_dict()
                }

            # Save last, best and delete
            torch.save(ckpt, last)
            if (best_fitness == fi) and not final_epoch:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    n = opt.name
    if len(n):
        n = '_' + n if not n.isnumeric() else n
        fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
        for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                ispt = f2.endswith('.pt')  # is *.pt
                strip_optimizer(f2) if ispt else None  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' % (
                    f2, opt.bucket)) if opt.bucket and ispt else None  # upload

    if not opt.evolve:
        plot_results()  # save as results.png
    print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1,
                                                    (time.time() - t0) / 3600))
    dist.destroy_process_group(
    ) if device.type != 'cpu' and torch.cuda.device_count() > 1 else None
    torch.cuda.empty_cache()
    return results
Example #6
0
def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
    callbacks.run('on_pretrain_routine_start')

    # Directories
    w = save_dir / 'weights'  # weights dir
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))

    # Save run settings
    if not evolve:
        with open(save_dir / 'hyp.yaml', 'w') as f:
            yaml.safe_dump(hyp, f, sort_keys=False)
        with open(save_dir / 'opt.yaml', 'w') as f:
            yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Loggers
    data_dict = None
    if RANK in {-1, 0}:
        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
        if loggers.wandb:
            data_dict = loggers.wandb.data_dict
            if resume:
                weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

    # Config
    plots = not evolve and not opt.noplots  # create plots
    cuda = device.type != 'cpu'
    init_seeds(1 + RANK)
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    train_path, val_path = data_dict['train'], data_dict['val']
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset

    # Model
    check_suffix(weights, '.pt')  # check weights
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(LOCAL_RANK):
            weights = attempt_download(weights)  # download if not found locally
        print('weights = ', weights)
        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
    else:
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

    # 加载教师模型,用于知识蒸馏
    from models.common import DetectMultiBackend
    model_t = DetectMultiBackend(weights=ROOT / 'yolov5x.pt', device=device)
    print('成功加载教师模型' + '!' * 100)

    # Freeze
    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            LOGGER.info(f'freezing {k}')
            v.requires_grad = False

    # Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz)
        loggers.on_params_update({"batch_size": batch_size})

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    g = [], [], []  # optimizer parameter groups
    bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g[2].append(v.bias)
        if isinstance(v, bn):  # weight (no decay)
            g[1].append(v.weight)
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)
            g[0].append(v.weight)

    if opt.optimizer == 'Adam':
        optimizer = Adam(g[2], lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    elif opt.optimizer == 'AdamW':
        optimizer = AdamW(g[2], lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = SGD(g[2], lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': g[0], 'weight_decay': hyp['weight_decay']})  # add g0 with weight_decay
    optimizer.add_param_group({'params': g[1]})  # add g1 (BatchNorm2d weights)
    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
                f"{len(g[1])} weight (no decay), {len(g[0])} weight, {len(g[2])} bias")
    del g

    # Scheduler
    if opt.cos_lr:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    else:
        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in {-1, 0} else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
        if epochs < start_epoch:
            LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, csd

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
                       'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Trainloader
    train_loader, dataset = create_dataloader(train_path,
                                              imgsz,
                                              batch_size // WORLD_SIZE,
                                              gs,
                                              single_cls,
                                              hyp=hyp,
                                              augment=True,
                                              cache=None if opt.cache == 'val' else opt.cache,
                                              rect=opt.rect,
                                              rank=LOCAL_RANK,
                                              workers=workers,
                                              image_weights=opt.image_weights,
                                              quad=opt.quad,
                                              prefix=colorstr('train: '),
                                              shuffle=True)
    mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class
    nb = len(train_loader)  # number of batches
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    if RANK in {-1, 0}:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=None if noval else opt.cache,
                                       rect=True,
                                       rank=-1,
                                       workers=workers * 2,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

        callbacks.run('on_pretrain_routine_end')

    # DDP mode
    if cuda and RANK != -1:
        if check_version(torch.__version__, '1.11.0'):
            model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
        else:
            model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model attributes
    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp['box'] *= 3 / nl  # scale to layers
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    stopper = EarlyStopping(patience=opt.patience)

    compute_loss = ComputeLoss(model)  # init loss class
    callbacks.run('on_train_start')
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
                f"Logging results to {colorstr('bold', save_dir)}\n"
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        callbacks.run('on_train_epoch_start')
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
        if RANK in {-1, 0}:
            pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            callbacks.run('on_train_batch_start')
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                with torch.no_grad():
                    preds = model_t(imgs).detach()  # forward
                    bz = preds.size(0)
                    pred_t = [preds[:, :3*80*80, :].reshape(bz, 3, 80, 80, 85),
                              preds[:, 3*80*80:3*80*80+3*40*40, :].reshape(bz, 3, 40, 40, 85),
                              preds[:, 3*80*80+3*40*40:, :].reshape(bz, 3, 20, 20, 85)]

                # print('Length of (pred) = ', len(pred))
                # for k in range(len(pred)):
                #     print(f'pred[{k}].shape = ', pred[k].shape)
                #
                # print('Length of (pred_t) = ', len(pred_t))
                # for k in range(len(pred_t)):
                #     print(f'pred_t[{k}].shape = ', pred_t[k].shape)
                #
                # print(f"Len of target = {colorstr('red', targets.size(0))}  targets.shape = {targets.shape}")
                # for k in range(4):
                #     print(f'Example: example of target_{k} = {targets[k]}')

                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                loss_kd = KDLoss(pred_t, pred)

                # print(f"{colorstr('red', loss.item())} {colorstr('red', loss_kd.item())}")
                loss = loss + loss_kd
                # print(f"{colorstr('red', pred[0].shape)}  {colorstr('red', pred_t[0].shape)} ")
                # loss_t, loss_items_t = compute_loss(pred, pred2target(pred=pred_t, n=targets.size(0)))  # 计算教师模型和学生模型的蒸馏损失

                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in {-1, 0}:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots)
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in {-1, 0}:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = val.run(data_dict,
                                           batch_size=batch_size // WORLD_SIZE * 2,
                                           imgsz=imgsz,
                                           model=ema.ema,
                                           single_cls=single_cls,
                                           dataloader=val_loader,
                                           save_dir=save_dir,
                                           plots=False,
                                           callbacks=callbacks,
                                           compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'model': deepcopy(de_parallel(model)).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict(),
                    'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
                    'date': datetime.now().isoformat()}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

            # Stop Single-GPU
            if RANK == -1 and stopper(epoch=epoch, fitness=fi):
                break

            # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
            # stop = stopper(epoch=epoch, fitness=fi)
            # if RANK == 0:
            #    dist.broadcast_object_list([stop], 0)  # broadcast 'stop' to all ranks

        # Stop DPP
        # with torch_distributed_zero_first(RANK):
        # if stop:
        #    break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in {-1, 0}:
        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    results, _, _ = val.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(f, device).half(),
                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools results at 0.65
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=is_coco,
                        verbose=True,
                        plots=plots,
                        callbacks=callbacks,
                        compute_loss=compute_loss)  # val best model with plots
                    if is_coco:
                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)

        callbacks.run('on_train_end', last, best, plots, epoch, results)

    torch.cuda.empty_cache()
    return results
Example #7
0
def train(train_iter, dev_iter, test_iter, model, args):
    if args.cuda:
        model = model.cuda()

    if args.Adam is True:
        print("Adam Training......")
        if args.fix_Embedding is True:
            optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
        else:
            optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay)
    elif args.SGD is True:
        print("SGD Training.......")
        if args.fix_Embedding is True:
            optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
        else:
            optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay,
                                    momentum=args.momentum_value)
    elif args.Adadelta is True:
        print("Adadelta Training.......")
        if args.fix_Embedding is True:
            optimizer = torch.optim.Adadelta(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
        else:
            optimizer = torch.optim.Adadelta(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay)

    '''
        lambda1 = lambda epoch: epoch // 30
        # lambda2 = lambda epoch: 0.99 ** epoch
        print("lambda1 {} lambda2 {} ".format(lambda1, lambda2))
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda2])
    
        scheduler = lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9)
    '''
    # scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min')

    lambda2 = lambda epoch: args.learning_rate_decay ** epoch
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda2])
    steps = 0
    model_count = 0
    model.train()
    for epoch in range(1, args.epochs+1):
        print("\n## 第{} 轮迭代,共计迭代 {} 次 !##\n".format(epoch, args.epochs))
        scheduler.step()
        # print("now lr is {} \n".format(scheduler.get_lr()))
        print("now lr is {} \n".format(optimizer.param_groups[0].get("lr")))
        for batch in train_iter:
            feature, target = batch.text, batch.label
            # feature.data.t_()
            feature = Variable(feature.data, volatile=False)
            target.data.sub_(1)  # batch first, index align
            if args.cuda:
                feature, target = feature.cuda(), target.cuda()

            # target = autograd.Variable(target)  # question 1
            optimizer.zero_grad()
            model.zero_grad()
            # model.hidden = model.init_hidden(args.lstm_num_layers, args.batch_size)
            if feature.size(1) != args.batch_size:
                continue
                # model.hidden = model.init_hidden(args.lstm_num_layers, feature.size(1))
            logit = model(feature)
            loss = F.cross_entropy(logit, target)
            # print(loss)logit.size()
            # loss.backward(retain_graph=True)
            loss.backward()
            if args.init_clip_max_norm is not None:
                # print("aaaa {} ".format(args.init_clip_max_norm))
                utils.clip_grad_norm(model.parameters(), max_norm=args.init_clip_max_norm)
            optimizer.step()

            steps += 1
            if steps % args.log_interval == 0:
                train_size = len(train_iter.dataset)
                # print("sadasd", torch.max(logit, 0))
                corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
                accuracy = float(corrects)/batch.batch_size * 100.0
                sys.stdout.write(
                    '\rBatch[{}/{}] - loss: {:.6f}  acc: {:.4f}%({}/{})'.format(steps,
                                                                            train_size,
                                                                             loss.data[0], 
                                                                             accuracy,
                                                                             corrects,
                                                                             batch.batch_size))
            if steps % args.test_interval == 0:
                eval(dev_iter, model, args, scheduler)
            if steps % args.save_interval == 0:
                if not os.path.isdir(args.save_dir): os.makedirs(args.save_dir)
                save_prefix = os.path.join(args.save_dir, 'snapshot')
                save_path = '{}_steps{}.pt'.format(save_prefix, steps)
                torch.save(model, save_path)
                print("\n", save_path, end=" ")
                test_model = torch.load(save_path)
                model_count += 1
                test_eval(test_iter, test_model, save_path, args, model_count)
    return model_count
Example #8
0
def train(
    hyp,  # path/to/hyp.yaml or hyp dictionary
    opt,
    device,
):
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \
        opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.notest, opt.nosave, opt.workers

    # Directories
    save_dir = Path(save_dir)
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(1 + RANK)
    with open(data) as f:
        data_dict = yaml.safe_load(f)  # data dict

    # Loggers
    loggers = {'wandb': None, 'tb': None}  # loggers dict
    if RANK in [-1, 0]:
        # TensorBoard
        if not evolve:
            prefix = colorstr('tensorboard: ')
            logger.info(
                f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/"
            )
            loggers['tb'] = SummaryWriter(str(save_dir))

        # W&B
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith(
            '.pt') and os.path.isfile(weights) else None
        run_id = run_id if opt.resume else None  # start fresh run if transfer learning
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        if loggers['wandb']:
            data_dict = wandb_logger.data_dict
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # may update weights, epochs if resuming

    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, data)  # check
    is_coco = data.endswith('coco.yaml') and nc == 80  # COCO dataset

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(RANK):
            weights = attempt_download(
                weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(RANK):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(
                ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning(
            'DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size // WORLD_SIZE,
                                            gs,
                                            single_cls,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=RANK,
                                            workers=workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, data, nc - 1)

    # Process 0
    if RANK in [-1, 0]:
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=opt.cache_images and not notest,
                                       rect=True,
                                       rank=-1,
                                       workers=workers,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if loggers['tb']:
                    loggers['tb'].add_histogram('classes', c, 0)  # TensorBoard

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['box_reg'] = 3. / nl
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if RANK in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if RANK != -1:
                indices = (torch.tensor(dataset.indices)
                           if RANK == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if RANK != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if RANK != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Print
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % (f'{epoch}/{epochs - 1}', mem, *mloss,
                                      targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    if loggers['tb'] and ni == 0:  # TensorBoard
                        with warnings.catch_warnings():
                            warnings.simplefilter(
                                'ignore')  # suppress jit trace warning
                            loggers['tb'].add_graph(
                                torch.jit.trace(de_parallel(model),
                                                imgs[0:1],
                                                strict=False), [])
                elif plots and ni == 10 and loggers['wandb']:
                    wandb_logger.log({
                        'Mosaics': [
                            loggers['wandb'].Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg') if x.exists()
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        # DDP process 0 or single-GPU
        if RANK in [-1, 0]:
            # mAP
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'gr', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, _ = test.run(data_dict,
                                            batch_size=batch_size //
                                            WORLD_SIZE * 2,
                                            imgsz=imgsz_test,
                                            model=ema.ema,
                                            single_cls=single_cls,
                                            dataloader=testloader,
                                            save_dir=save_dir,
                                            save_json=is_coco and final_epoch,
                                            verbose=nc < 50 and final_epoch,
                                            plots=plots and final_epoch,
                                            wandb_logger=wandb_logger,
                                            compute_loss=compute_loss)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # append metrics, val_loss

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if loggers['tb']:
                    loggers['tb'].add_scalar(tag, x, epoch)  # TensorBoard
                if loggers['wandb']:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch':
                    epoch,
                    'best_fitness':
                    best_fitness,
                    'training_results':
                    results_file.read_text(),
                    'model':
                    deepcopy(de_parallel(model)).half(),
                    'ema':
                    deepcopy(ema.ema).half(),
                    'updates':
                    ema.updates,
                    'optimizer':
                    optimizer.state_dict(),
                    'wandb_id':
                    wandb_logger.wandb_run.id if loggers['wandb'] else None
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if loggers['wandb']:
                    if ((epoch + 1) % opt.save_period == 0
                            and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(last.parent,
                                               opt,
                                               epoch,
                                               fi,
                                               best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in [-1, 0]:
        logger.info(
            f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n'
        )
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if loggers['wandb']:
                files = [
                    'results.png', 'confusion_matrix.png',
                    *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]
                ]
                wandb_logger.log({
                    "Results": [
                        loggers['wandb'].Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })

        if not evolve:
            if is_coco:  # COCO dataset
                for m in [last, best
                          ] if best.exists() else [last]:  # speed, mAP tests
                    results, _, _ = test.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz_test,
                        conf_thres=0.001,
                        iou_thres=0.7,
                        model=attempt_load(m, device).half(),
                        single_cls=single_cls,
                        dataloader=testloader,
                        save_dir=save_dir,
                        save_json=True,
                        plots=False)

            # Strip optimizers
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
            if loggers['wandb']:  # Log the stripped model
                loggers['wandb'].log_artifact(
                    str(best if best.exists() else last),
                    type='model',
                    name='run_' + wandb_logger.wandb_run.id + '_model',
                    aliases=['latest', 'best', 'stripped'])
        wandb_logger.finish_run()

    torch.cuda.empty_cache()
    return results
Example #9
0
def train(
    hyp,  # path/to/hyp.yaml or hyp dictionary
    opt,
    device,
):
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers

    # Directories
    w = save_dir / 'weights'  # weights dir
    w.mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Config
    plots = not evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(1 + RANK)
    with torch_distributed_zero_first(RANK):
        data_dict = check_dataset(data)  # check
    train_path, val_path = data_dict['train'], data_dict['val']
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(
        names
    ) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
    # is_coco = data.endswith('coco.yaml') and nc == 80  # COCO dataset
    is_coco = data.endswith('top3.yaml') and nc == 5  # COCO dataset
    # Loggers
    if RANK in [-1, 0]:
        loggers = Loggers(save_dir, weights, opt, hyp, data_dict,
                          LOGGER).start()  # loggers dict
        if loggers.wandb and resume:
            weights, epochs, hyp, data_dict = opt.weights, opt.epochs, opt.hyp, loggers.wandb.data_dict

    # Model
    pretrained = weights.endswith('.pt')
    pretrained = False
    if pretrained:
        with torch_distributed_zero_first(RANK):
            weights = attempt_download(
                weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict(
        )  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(),
                              exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(
            f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}'
        )  # report
    else:
        model = Model(cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print(f'freezing {k}')
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    g0, g1, g2 = [], [], []  # optimizer parameter groups
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g2.append(v.bias)
        if isinstance(v, nn.BatchNorm2d):  # weight with decay
            g0.append(v.weight)
        elif hasattr(v, 'weight') and isinstance(
                v.weight, nn.Parameter):  # weight without decay
            g1.append(v.weight)

    if opt.adam:
        optimizer = Adam(g0, lr=hyp['lr0'],
                         betas=(hyp['momentum'],
                                0.999))  # adjust beta1 to momentum
    else:
        optimizer = SGD(g0,
                        lr=hyp['lr0'],
                        momentum=hyp['momentum'],
                        nesterov=True)

    optimizer.add_param_group({
        'params': g1,
        'weight_decay': hyp['weight_decay']
    })  # add g1 with weight_decay
    optimizer.add_param_group({'params': g2})  # add g2 (biases)
    LOGGER.info(
        f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
        f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias")
    del g0, g1, g2

    # Scheduler
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
            'lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(
        optimizer,
        lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
        if epochs < start_epoch:
            LOGGER.info(
                f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs."
            )
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, csd

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz = check_img_size(opt.imgsz, gs,
                           floor=gs * 2)  # verify imgsz is gs-multiple

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning(
            'DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Trainloader
    train_loader, dataset = create_dataloader(train_path,
                                              imgsz,
                                              batch_size // WORLD_SIZE,
                                              gs,
                                              single_cls,
                                              hyp=hyp,
                                              augment=True,
                                              cache=opt.cache_images,
                                              rect=opt.rect,
                                              rank=RANK,
                                              workers=workers,
                                              image_weights=opt.image_weights,
                                              quad=opt.quad,
                                              prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(train_loader)  # number of batches
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    if RANK in [-1, 0]:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=opt.cache_images and not noval,
                                       rect=True,
                                       rank=-1,
                                       workers=workers,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if RANK in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if RANK != -1:
                indices = (torch.tensor(dataset.indices)
                           if RANK == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if RANK != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(
            ('\n' + '%10s' * 7) %
            ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs,
                                                     size=ns,
                                                     mode='bilinear',
                                                     align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss,
                                      targets.shape[0], imgs.shape[-1]))
                loggers.on_train_batch_end(ni, model, imgs, targets, paths,
                                           plots)

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in [-1, 0]:
            # mAP
            loggers.on_train_epoch_end(epoch)
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = epoch + 1 == epochs
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = val.run(data_dict,
                                           batch_size=batch_size //
                                           WORLD_SIZE * 2,
                                           imgsz=imgsz,
                                           model=ema.ema,
                                           single_cls=single_cls,
                                           dataloader=val_loader,
                                           save_dir=save_dir,
                                           save_json=is_coco and final_epoch,
                                           verbose=nc < 50 and final_epoch,
                                           plots=plots and final_epoch,
                                           loggers=loggers,
                                           compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            loggers.on_train_val_end(mloss, results, lr, epoch, best_fitness,
                                     fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch':
                    epoch,
                    'best_fitness':
                    best_fitness,
                    'model':
                    deepcopy(de_parallel(model)).half(),
                    'ema':
                    deepcopy(ema.ema).half(),
                    'updates':
                    ema.updates,
                    'optimizer':
                    optimizer.state_dict(),
                    'wandb_id':
                    loggers.wandb.wandb_run.id if loggers.wandb else None
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
                loggers.on_model_save(last, epoch, final_epoch, best_fitness,
                                      fi)

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in [-1, 0]:
        LOGGER.info(
            f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n'
        )
        if not evolve:
            if is_coco:  # COCO dataset
                for m in [last, best
                          ] if best.exists() else [last]:  # speed, mAP tests
                    results, _, _ = val.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(m, device).half(),
                        iou_thres=
                        0.7,  # NMS IoU threshold for best pycocotools results
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=False,
                        plots=False)
            # Strip optimizers
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
        loggers.on_train_end(last, best, plots)

    torch.cuda.empty_cache()
    return results
Example #10
0
def build_scheduler(optimizer):
    lambdaAll = lambda iteration: 0.1**(iteration // 50000)
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambdaAll)

    return scheduler
Example #11
0
def train(args, model, enc):
    global best_acc

    #TODO: calculate weights by processing dataset histogram (now its being set by hand from the torch values)
    #create a loder to run all images and calculate histogram of labels, then create weight array using class balancing

    weight = torch.ones(NUM_CLASSES)
    weight[0] = 1
    weight[1] = 1
    weight[2] = 1
    weight[3] = 1
    weight[4] = 1
    weight[5] = 1
    weight[6] = 1
    weight[7] = 1
    weight[8] = 1
    weight[9] = 1
        
    
    assert os.path.exists(args.datadir), "Error: datadir (dataset directory) could not be loaded"

    #Loading the dataset
    co_transform = MyCoTransform(False, augment=True, height=args.height)#1024)
    co_transform_val = MyCoTransform(False, augment=False, height=args.height)#1024)
    
    
    dataset_train = cityscapes(args.datadir, co_transform, 'train')
    dataset_val = cityscapes(args.datadir, co_transform_val, 'test')

    loader = DataLoader(dataset_train, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True)
    loader_val = DataLoader(dataset_val, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=False)

    if args.cuda:
        criterion = CrossEntropyLoss2dv2(weight.cuda())
        
    else:
        criterion = CrossEntropyLoss2dv2(weight)

    savedir = '../save/'+args.savedir

    automated_log_path = savedir + "/automated_log.txt"
    modeltxtpath = savedir + "/model.txt"    

    if (not os.path.exists(automated_log_path)):    #dont add first line if it exists 
        with open(automated_log_path, "a") as myfile:
            myfile.write("Epoch\t\tTrain-loss\t\tTest-loss\t\tTrain-IoU\t\tTest-IoU\t\tlearningRate")

    with open(modeltxtpath, "w") as myfile:
        myfile.write(str(model))
    
    # We use Adam optimizer with lr of 5e-4
    optimizer = Adam([ {'params' : model.parameters()},], 5e-4, (0.9, 0.999),  eps=1e-08, weight_decay=1e-4)
    
    start_epoch = 1
    if args.resume:
        #Must load weights, optimizer, epoch and best value. 
        filenameCheckpoint = savedir + '/checkpoint.pth.tar'#'/model_best.pth.tar'

        assert os.path.exists(filenameCheckpoint), "Error: resume option was used but checkpoint was not found in folder"
        checkpoint = torch.load(filenameCheckpoint)
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        best_acc = checkpoint['best_acc']
        print("=> Loaded checkpoint at epoch {})".format(checkpoint['epoch']))
    
    
    lambda1 = lambda epoch: pow((1-((epoch-1)/args.num_epochs)),0.9)                            ## scheduler 2
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)                             ## scheduler 2

    cont_train_loss = []
    cont_val_loss = []
    for epoch in range(start_epoch, args.num_epochs+1):
        print("----- TRAINING - EPOCH", epoch, "-----")

        scheduler.step(epoch)    ## scheduler 2

        epoch_loss = []
        time_train = []
     
        doIouTrain = args.iouTrain   
        doIouVal =  args.iouVal      

        #TODO: remake the evalIoU.py code to avoid using "evalIoU.args"
        confMatrix    = evalIoU.generateMatrixTrainId(evalIoU.args)
        perImageStats = {}
        nbPixels = 0

        usedLr = 0
        for param_group in optimizer.param_groups:
            print("LEARNING RATE: ", param_group['lr'])
            usedLr = float(param_group['lr'])

        
        model.train()
    
        for step, (images,oldimages, labels, filename, filenameGt) in enumerate(loader):
            start_time = time.time()
            break
            
            if args.cuda:
                images = images.cuda()
                labels = labels.cuda()

            inputs = Variable(images)
            targets = Variable(labels)
            outputs, road_mask = model(inputs)

            optimizer.zero_grad()
            loss = criterion(outputs, targets[:, 0])
            loss.backward()
            optimizer.step()

            epoch_loss.append(loss.data[0])
            
            time_train.append(time.time() - start_time)

            if (doIouTrain):
                #compatibility with criterion dataparallel
                if isinstance(outputs, list):   #merge gpu tensors
                    outputs_cpu = outputs[0].cpu()
                    for i in range(1,len(outputs)):
                        outputs_cpu = torch.cat((outputs_cpu, outputs[i].cpu()), 0)
                else:
                    outputs_cpu = outputs.cpu()

                #start_time_iou = time.time()
                for i in range(0, outputs_cpu.size(0)):   #args.batch_size
                    prediction = ToPILImage()(outputs_cpu[i].max(0)[1].data.unsqueeze(0).byte())
                    groundtruth = ToPILImage()(labels[i].cpu().byte())
                    nbPixels += evalIoU.evaluatePairPytorch(prediction, groundtruth, confMatrix, perImageStats, evalIoU.args)
                #print ("Time to add confusion matrix: ", time.time() - start_time_iou)


        if not args.eval:    
            average_epoch_loss_train = 0#sum(epoch_loss) / len(epoch_loss)
        else :
            average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)
        #evalIoU.printConfMatrix(confMatrix, evalIoU.args)
        
        iouTrain = 0
        if (doIouTrain ):
            # Calculate IOU scores on class level from matrix
            classScoreList = {}
            for label in evalIoU.args.evalLabels:
                labelName = evalIoU.trainId2label[label].name
                classScoreList[labelName] = evalIoU.getIouScoreForTrainLabel(label, confMatrix, evalIoU.args)
            print(classScoreList)
            iouAvgStr  = evalIoU.getColorEntry(evalIoU.getScoreAverage(classScoreList, evalIoU.args), evalIoU.args) + "{avg:5.3f}".format(avg=evalIoU.getScoreAverage(classScoreList, evalIoU.args)) + evalIoU.args.nocol

            iouTrain = float(evalIoU.getScoreAverage(classScoreList, evalIoU.args))
            print ("EPOCH IoU on TRAIN set: ", iouAvgStr)
            
            evalIoU.printClassScoresPytorchTrain(classScoreList, evalIoU.args)
            print("--------------------------------")
            print("Score Average : " + iouAvgStr )#+ "    " + niouAvgStr)
            print("--------------------------------")
            

        #Validate on val images after each epoch of training
        print("----- VALIDATING - EPOCH", epoch, "-----")
        model.eval()
        #model = pretrained_model
        epoch_loss_val = []
        time_val = []

        #New confusion matrix data
        confMatrix    = evalIoU.generateMatrixTrainId(evalIoU.args)
        perImageStats = {}
        nbPixels = 0
        val_ct = 0
        for step, (images, oldimages, labels, filename, filenameGt) in enumerate(loader_val):
            start_time = time.time()
            #break
            if args.cuda:
                images = images.cuda()
                labels = labels.cuda()
            
            inputs = Variable(images, volatile=True)    #volatile flag makes it free backward or outputs for eval
            targets = Variable(labels, volatile=True)
            outputs, road_mask = model(inputs) 
            
            loss = criterion(outputs, targets[:, 0])
            epoch_loss_val.append(loss.data[0])
            time_val.append(time.time() - start_time)
            
            #Add outputs to confusion matrix
            if (doIouVal):
                #compatibility with criterion dataparallel
                if isinstance(outputs, list):   #merge gpu tensors
                    outputs_cpu = outputs[0].cpu()
                    for i in range(1,len(outputs)):
                        outputs_cpu = torch.cat((outputs_cpu, outputs[i].cpu()), 0)
                else:
                    outputs_cpu = outputs.cpu()
                    targets_cpu = targets.cpu()
                    
                start_time_iou = time.time()
                for i in range(0, outputs_cpu.size(0)):   #args.batch_size
                    val_ct += 1
                    pred_img = outputs_cpu[i].max(0)[1].data.unsqueeze(0)
                    
                    roadMask = road_mask[i].data.cpu()
                    
                    #print(type(roadMask))
                    pred_img[roadMask == 0] = 255
                    #predictionClr = ToPILImage()(Colorize()(pred_img.byte())) 
                    prediction = ToPILImage()(pred_img.byte())
                    
                    #filenameSave = "./save_color_res/" + str(val_ct).zfill(3)+'.png'
                    #filename_break = str(filename[0]).split('/')

                    #filename_path = '/'.join(filename_break[-3:])

                    #filenameSave = "./save_color_res/" + str(filename_path)
                    
                    #os.makedirs(os.path.dirname(filenameSave), exist_ok=True)

                    #predictionClr.save(filenameSave)
                    
                    groundtruth = ToPILImage()(labels[i].cpu().byte())
                    
                    nbPixels += evalIoU.evaluatePairPytorch(prediction, groundtruth, confMatrix, perImageStats, evalIoU.args)
                print ("Time to add confusion matrix: ", time.time() - start_time_iou)
                       
        
        average_epoch_loss_val = sum(epoch_loss_val) / len(epoch_loss_val)
        
        print(doIouVal)
        
        # Calculate IOU scores on class level from matrix
        iouVal = 0
        confMatrix= confMatrix[:12,:12]
        
        if (doIouVal):
            #start_time_iou = time.time()
            classScoreList = {}
            for label in evalIoU.args.evalLabels:
                labelName = evalIoU.trainId2label[label].name
                classScoreList[labelName] = evalIoU.getIouScoreForTrainLabel(label, confMatrix, evalIoU.args)
            print(classScoreList)

            iouAvgStr  = evalIoU.getColorEntry(evalIoU.getScoreAverage(classScoreList, evalIoU.args), evalIoU.args) + "{avg:5.3f}".format(avg=evalIoU.getScoreAverage(classScoreList, evalIoU.args)) + evalIoU.args.nocol
            iouVal = float(evalIoU.getScoreAverage(classScoreList, evalIoU.args))
            print ("EPOCH IoU on VAL set: ", iouAvgStr)
            #print("")
            #evalIoU.printClassScoresPytorchTrain(classScoreList, evalIoU.args)
            #print("--------------------------------")
            #print("Score Average : " + iouAvgStr )#+ "    " + niouAvgStr)
            #print("--------------------------------")
            #print("")
            #print ("Time to calculate confusion matrix: ", time.time() - start_time_iou)
            #input ("Press key to continue...")
           

        # remember best valIoU and save checkpoint
        if iouVal == 0:
            current_acc = average_epoch_loss_val
        else:
            current_acc = iouVal 
        is_best = current_acc > best_acc
        best_acc = max(current_acc, best_acc)
    
        filenameCheckpoint = savedir + '/checkpoint.pth.tar'
        filenameBest = savedir + '/model_best.pth.tar'
        save_checkpoint({
            'epoch': epoch + 1,
            'arch': str(model),
            'state_dict': model.state_dict(),
            'best_acc': best_acc,
            'optimizer' : optimizer.state_dict(),
        }, is_best, filenameCheckpoint, filenameBest)

        #SAVE MODEL AFTER EPOCH
        
        filename = savedir+'/model-'+str(epoch)+'}.pth'
        filenamebest = savedir+'/model_best.pth'
        if args.epochs_save > 0 and step > 0 and step % args.epochs_save == 0:
            torch.save(model.state_dict(), filename)
            print('save: {'+filename+'} (epoch: {'+str(epoch)+'})')
        if (is_best):
            torch.save(model.state_dict(), filenamebest)
            print('save: {'+filenamebest+'} (epoch: {'+str(epoch)+'})')
            
            
            with open(savedir + "/best_encoder.txt", "w") as myfile:
                myfile.write("Best epoch is %d, with Val-IoU= %.4f" % (epoch, iouVal))           

        #SAVE TO FILE A ROW WITH THE EPOCH RESULT (train loss, val loss, train IoU, val IoU)
        #Epoch		Train-loss		Test-loss	Train-IoU	Test-IoU		learningRate
        with open(automated_log_path, "a") as myfile:
            myfile.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.8f" % (epoch, average_epoch_loss_train, average_epoch_loss_val, iouTrain, iouVal, usedLr ))
    
    return(model)   #return model (convenience for encoder-decoder training)
Example #12
0
def main():
    args = parser.parse_args()
    with open(args.config) as f:
        config = yaml.load(f)
    print("\n**************************")
    for k, v in config['common'].items():
        setattr(args, k, v)
        print('\n[%s]:'%(k), v)
    print("\n**************************\n")
    
    try:
        os.makedirs(args.save_path)
    except OSError:
        pass
    
    train_transforms = transforms.Compose([
        d_utils.PointcloudToTensor(),
        d_utils.PointcloudScaleAndTranslate(),
        d_utils.PointcloudRandomInputDropout()
    ])
    test_transforms = transforms.Compose([
        d_utils.PointcloudToTensor(),
        #d_utils.PointcloudScaleAndTranslate()
    ])
    
    train_dataset = ModelNet40Cls(num_points = args.num_points, root = args.data_root, transforms=train_transforms)
    train_dataloader = DataLoader(
        train_dataset, 
        batch_size=args.batch_size,
        shuffle=True, 
        num_workers=int(args.workers)
    )

    test_dataset = ModelNet40Cls(num_points = args.num_points, root = args.data_root, transforms=test_transforms, train=False)
    test_dataloader = DataLoader(
        test_dataset, 
        batch_size=args.batch_size,
        shuffle=False, 
        num_workers=int(args.workers)
    )
    
    model = RSCNN_SSN(num_classes = args.num_classes, input_channels = args.input_channels, relation_prior = args.relation_prior, use_xyz = True)
    # for multi GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    if torch.cuda.is_available() and torch.cuda.device_count()>=2:
        model = nn.DataParallel(model, device_ids=[0, 1])
        model.to(device)
    elif  torch.cuda.is_available() and torch.cuda.device_count()==1:
        model.cuda()

    optimizer = optim.Adam(
        model.parameters(), lr=args.base_lr, weight_decay=args.weight_decay)

    lr_lbmd = lambda e: max(args.lr_decay**(e // args.decay_step), args.lr_clip / args.base_lr)
    bnm_lmbd = lambda e: max(args.bn_momentum * args.bn_decay**(e // args.decay_step), args.bnm_clip)
    lr_scheduler = lr_sched.LambdaLR(optimizer, lr_lbmd)
    bnm_scheduler = pt_utils.BNMomentumScheduler(model, bnm_lmbd)
    
    if args.checkpoint is not '':
        model.load_state_dict(torch.load(args.checkpoint))
        print('Load model successfully: %s' % (args.checkpoint))

    criterion = nn.CrossEntropyLoss()
    num_batch = len(train_dataset)/args.batch_size
    
    # training
    train(train_dataloader, test_dataloader, model, criterion, optimizer, lr_scheduler, bnm_scheduler, args, num_batch)
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if rank in [-1, 0] and wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv3'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights,
                                            quad=opt.quad,
                                            prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
            prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3. / nl  # scale to image size and layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({
                        "Mosaics": [
                            wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg')
                        ]
                    })

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(model,
                                include=[
                                    'yaml', 'nc', 'hyp', 'gr', 'names',
                                    'stride', 'class_weights'
                                ])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in [last, best]:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'precision_recall_curve.png',
                    'confusion_matrix.png'
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
                if opt.log_artifacts:
                    wandb.log_artifact(artifact_or_path=str(final),
                                       type='model',
                                       name=save_dir.stem)

        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for conf, iou, save_json in ([0.25, 0.45,
                                          False], [0.001, 0.65,
                                                   True]):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=total_batch_size,
                                          imgsz=imgsz_test,
                                          conf_thres=conf,
                                          iou_thres=iou,
                                          model=attempt_load(final,
                                                             device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=save_json,
                                          plots=False)

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
Example #14
0
def train(cfg, model_cfg='FCN/configs/vgg16-fcn32s.cfg'):
    epochs = cfg.SOLVER.MAX_EPOCHS
    start_epoch = 0
    device = cfg.MODEL.DEVICE
    results_file = cfg.RESULT_FILE
    nc = cfg.MODEL.NUM_CLASSES  # number of classes
    best_fitness = 0.0

    # dataset
    train_loader = make_data_loader(cfg, is_train=True)
    val_loader = make_data_loader(cfg, is_train=False)

    # building model and optimizer also reuse.
    r = build_model_optim(cfg, model_cfg)
    model = r['model'].to(device=device)
    optimizer = r['optimizer']
    if cfg.MODEL.REFUSE.WEIGHT.strip():
        start_epoch = r['epoch'] + 1
        best_fitness = r['best_fitness']
    lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2)**1.0
                    ) * 0.95 + 0.05  # cosine  ## 越来越少
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    scheduler.last_epoch = start_epoch - 1

    # inference object
    inference = Inference(cfg, model, val_loader, cross_entropy4d, device)

    # train
    t0 = time.time()
    for epoch in range(start_epoch, epochs):
        eval_loss, eval_acc, eval_acc_cls, eval_mean_iu, eval_fwavacc = 0, 0, 0, 0, 0

        model.train()

        mloss = torch.zeros(1)
        nb = len(train_loader)  # number of batch.
        pbar = tqdm(enumerate(train_loader), total=nb)  # progress bar
        for i, (imgs, targets) in pbar:
            imgs, targets = imgs.to(device=device), targets.to(device=device)
            # --multi scale--

            # print('imgs.shape=====================', imgs.shape)
            outputs = model(imgs)
            # outputs=imgs.repeat(1,7,1,1).requires_grad_(True)
            # loss=cross_entropy2d(outputs, targets)      # per sample
            loss = cross_entropy4d(outputs, targets)  # per sample
            # print('loss===============', loss)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # metric
            label_pred = outputs.max(dim=1)[1].cpu().numpy()
            label_true = targets.cpu().numpy()
            for lbp, lbt in zip(label_pred, label_true):
                acc, acc_cls, mean_iu, fwavacc = label_accuracy_score(
                    lbt, lbp, nc)
                eval_acc += acc
                eval_acc_cls += acc_cls
                eval_mean_iu += mean_iu
                eval_fwavacc += fwavacc
            print(
                'eval_acc, eval_acc_cls  eval_mean_iu  eval_fwavacc==========',
                eval_acc, eval_acc_cls, eval_mean_iu, eval_fwavacc)
            mloss = (mloss * i + loss) / (i + 1)  # mean loss per batch
            mem = '%.3gG' % (torch.cuda.memory_cached() /
                             1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.3g') % ('%g/%g' %
                                           (epoch, epochs - 1), mem, mloss)
            pbar.set_description(s)  # batch show

        scheduler.step()

        # test
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:
            results = inference.evaluate()

        # write result (train + val) accumulation
        with open(results_file, 'a') as f:
            f.write(s + '%10.5g' * 5 % results + '\n')

        # tensorboard (train + val)
        train_results = [
            mloss, eval_acc, eval_acc_cls, eval_mean_iu, eval_fwavacc
        ]
        if tb_writer:
            tags = [
                'train/loss', 'train/eval_acc', 'train/eval_acc_cls',
                'train/eval_mean_iu', 'train/eval_fwavacc', 'val/loss',
                'val/eval_acc', 'val/eval_acc_cls', 'val/eval_mean_iu',
                'val/eval_fwavacc'
            ]
            for tag, l in zip(tags, train_results + list(results)):
                tb_writer.add_scalar(tag, l, epoch)

        # update acc
        if list(results)[0] > best_fitness:
            best_fitness = list(results)[0]

        # save model: save model best and last epoch.
        if best_fitness or final_epoch:
            with open(results_file, 'r') as f:
                chkpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'training_results': f.read(),
                    'model': model.state_dict(),
                    'optimizer':
                    None if final_epoch else optimizer.state_dict()
                }
            if best_fitness:
                torch.save(chkpt, best)
            else:
                torch.save(chkpt, last)
            del chkpt
###################################### Loading for Discriminator #####################################

if settings.load_model_path:
    d_model_state_dict, d_optimizer_state_dict, epoch, step = load_trainer(
        prefix='discriminator1')
    discriminator1.load_state_dict(d_model_state_dict)
    discriminator_optimizer.load_state_dict(d_optimizer_state_dict)

discriminator_optimizer.param_groups[0].update({
    'lr':
    settings.initial_learning_rate,
    'weight_decay':
    settings.weight_decay
})
discriminator_scheduler = lr_scheduler.LambdaLR(
    discriminator_optimizer,
    lr_lambda=settings.learning_rate_multiplier_function)
discriminator_scheduler.step(epoch)

########################################  Loading for Generator  #################################################################
if settings.load_model_path:
    g_model_state_dict, g_optimizer_state_dict, _, _ = load_trainer(
        prefix='generator')
    generator.load_state_dict(g_model_state_dict)
    generator_optimizer.load_state_dict(g_optimizer_state_dict)

generator_optimizer.param_groups[0].update(
    {'lr': settings.initial_learning_rate})
generator_scheduler = lr_scheduler.LambdaLR(
    generator_optimizer, lr_lambda=settings.learning_rate_multiplier_function)
generator_scheduler.step(epoch)
Example #16
0
def train(args, model, enc=False):
    best_acc = 0

    #TODO: calculate weights by processing dataset histogram (now its being set by hand from the torch values)
    #create a loder to run all images and calculate histogram of labels, then create weight array using class balancing

    weight = torch.ones(NUM_CLASSES)
    if (enc):
        weight[0] = 4.38133159
        weight[1] = 1.29574148
    else:
        weight[0] = 4.40513628
        weight[1] = 1.293674

    if (enc):
        up = torch.nn.Upsample(scale_factor=16, mode='bilinear')
    else:
        up = torch.nn.Upsample(scale_factor=2, mode='bilinear')

    if args.cuda:
        up = up.cuda()

    assert os.path.exists(
        args.datadir), "Error: datadir (dataset directory) could not be loaded"

    co_transform = MyCoTransform(enc, augment=True, height=args.height)  #1024)
    co_transform_val = MyCoTransform(enc, augment=False,
                                     height=args.height)  #1024)
    dataset_train = cityscapes(args.datadir, co_transform, 'train')
    dataset_val = cityscapes(args.datadir, co_transform_val, 'val')

    loader = DataLoader(dataset_train,
                        num_workers=args.num_workers,
                        batch_size=args.batch_size,
                        shuffle=True)
    loader_val = DataLoader(dataset_val,
                            num_workers=args.num_workers,
                            batch_size=args.batch_size,
                            shuffle=False)

    if args.cuda:
        weight = weight.cuda()

    if args.weighted:
        criterion = CrossEntropyLoss2d(weight)
    else:
        criterion = CrossEntropyLoss2d()

    print(type(criterion))

    savedir = args.savedir

    if (enc):
        automated_log_path = savedir + "/automated_log_encoder.txt"
        modeltxtpath = savedir + "/model_encoder.txt"
    else:
        automated_log_path = savedir + "/automated_log.txt"
        modeltxtpath = savedir + "/model.txt"

    if (not os.path.exists(automated_log_path)
        ):  #dont add first line if it exists
        with open(automated_log_path, "a") as myfile:
            myfile.write(
                "Epoch\t\tTrain-loss\t\tTest-loss\t\tTrain-IoU\t\tTest-IoU\t\tlearningRate"
            )

    with open(modeltxtpath, "w") as myfile:
        myfile.write(str(model))

    #TODO: reduce memory in first gpu: https://discuss.pytorch.org/t/multi-gpu-training-memory-usage-in-balance/4163/4        #https://github.com/pytorch/pytorch/issues/1893

    #optimizer = Adam(model.parameters(), 5e-4, (0.9, 0.999),  eps=1e-08, weight_decay=2e-4)     ## scheduler 1
    optimizer = Adam(model.parameters(),
                     5e-4, (0.9, 0.999),
                     eps=1e-08,
                     weight_decay=1e-4)  ## scheduler 2

    start_epoch = 1
    if args.resume:
        #Must load weights, optimizer, epoch and best value.
        if enc:
            filenameCheckpoint = savedir + '/checkpoint_enc.pth.tar'
        else:
            filenameCheckpoint = savedir + '/checkpoint.pth.tar'

        assert os.path.exists(
            filenameCheckpoint
        ), "Error: resume option was used but checkpoint was not found in folder"
        checkpoint = torch.load(filenameCheckpoint)
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        best_acc = checkpoint['best_acc']
        print("=> Loaded checkpoint at epoch {})".format(checkpoint['epoch']))

    #scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5) # set up scheduler     ## scheduler 1
    lambda1 = lambda epoch: pow(
        (1 - ((epoch - 1) / args.num_epochs)), 0.9)  ## scheduler 2
    scheduler = lr_scheduler.LambdaLR(optimizer,
                                      lr_lambda=lambda1)  ## scheduler 2

    if args.visualize and args.steps_plot > 0:
        board = Dashboard(args.port)

    for epoch in range(start_epoch, args.num_epochs + 1):
        print("----- TRAINING - EPOCH", epoch, "-----")

        scheduler.step(epoch)  ## scheduler 2

        epoch_loss = []
        time_train = []

        doIouTrain = args.iouTrain
        doIouVal = args.iouVal

        if (doIouTrain):
            iouEvalTrain = iouEval(NUM_CLASSES, args.ignoreindex)

        usedLr = 0
        for param_group in optimizer.param_groups:
            print("LEARNING RATE: ", param_group['lr'])
            usedLr = float(param_group['lr'])

        model.train()
        for step, (images, labels, images_orig,
                   labels_orig) in enumerate(loader):

            start_time = time.time()
            #print (labels.size())
            #print (np.unique(labels.numpy()))
            #print("labels: ", np.unique(labels[0].numpy()))
            #labels = torch.ones(4, 1, 512, 1024).long()
            if args.cuda:
                images = images.cuda()
                labels = labels.cuda()

            inputs = Variable(images)
            targets = Variable(labels)
            outputs = model(inputs, only_encode=enc)

            #print("targets", np.unique(targets[:, 0].cpu().data.numpy()))

            optimizer.zero_grad()
            loss = criterion(outputs, targets[:, 0])
            loss.backward()
            optimizer.step()

            epoch_loss.append(loss.data[0])
            time_train.append(time.time() - start_time)

            if (doIouTrain):
                #start_time_iou = time.time()
                upsampledOutputs = up(outputs)
                iouEvalTrain.addBatch(
                    upsampledOutputs.max(1)[1].unsqueeze(1).data, labels_orig)
                #print ("Time to add confusion matrix: ", time.time() - start_time_iou)

            #print(outputs.size())
            if args.visualize and args.steps_plot > 0 and step % args.steps_plot == 0:
                start_time_plot = time.time()
                image = inputs[0].cpu().data
                #image[0] = image[0] * .229 + .485
                #image[1] = image[1] * .224 + .456
                #image[2] = image[2] * .225 + .406
                #print("output", np.unique(outputs[0].cpu().max(0)[1].data.numpy()))
                board.image(image, f'input (epoch: {epoch}, step: {step})')
                if isinstance(outputs, list):  #merge gpu tensors
                    board.image(
                        color_transform(
                            outputs[0][0].cpu().max(0)[1].data.unsqueeze(0)),
                        f'output (epoch: {epoch}, step: {step})')
                else:
                    board.image(
                        color_transform(
                            outputs[0].cpu().max(0)[1].data.unsqueeze(0)),
                        f'output (epoch: {epoch}, step: {step})')
                board.image(color_transform(targets[0].cpu().data),
                            f'target (epoch: {epoch}, step: {step})')
                print("Time to paint images: ", time.time() - start_time_plot)
            if args.steps_loss > 0 and step % args.steps_loss == 0:
                average = sum(epoch_loss) / len(epoch_loss)
                print(
                    f'loss: {average:0.4} (epoch: {epoch}, step: {step})',
                    "// Avg time/img: %.4f s" %
                    (sum(time_train) / len(time_train) / args.batch_size))

        average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)

        iouTrain = 0
        if (doIouTrain):
            _, iou_classes = iouEvalTrain.getIoU()
            iouTrain = iou_classes[0]
            iouStr = getColorEntry(iouTrain) + '{:0.2f}'.format(
                iouTrain * 100) + '\033[0m'
            print("EPOCH IoU on TRAIN set: ", iouStr, "%", iou_classes)

        #Validate on 500 val images after each epoch of training
        print("----- VALIDATING - EPOCH", epoch, "-----")
        model.eval()
        epoch_loss_val = []
        time_val = []

        if (doIouVal):
            iouEvalVal = iouEval(NUM_CLASSES, args.ignoreindex)

        for step, (images, labels, images_orig,
                   labels_orig) in enumerate(loader_val):
            start_time = time.time()
            if args.cuda:
                images = images.cuda()
                labels = labels.cuda()

            inputs = Variable(
                images, volatile=True
            )  #volatile flag makes it free backward or outputs for eval
            targets = Variable(labels, volatile=True)
            outputs = model(inputs, only_encode=enc)

            loss = criterion(outputs, targets[:, 0])
            epoch_loss_val.append(loss.data[0])
            time_val.append(time.time() - start_time)

            #Add batch to calculate TP, FP and FN for iou estimation
            if (doIouVal):
                #start_time_iou = time.time()
                upsampledOutputs = up(outputs)
                iouEvalVal.addBatch(
                    upsampledOutputs.max(1)[1].unsqueeze(1).data, labels_orig)
                #print ("Time to add confusion matrix: ", time.time() - start_time_iou)

            if args.visualize and args.steps_plot > 0 and step % args.steps_plot == 0:
                start_time_plot = time.time()
                image = inputs[0].cpu().data
                board.image(image, f'VAL input (epoch: {epoch}, step: {step})')
                if isinstance(outputs, list):  #merge gpu tensors
                    board.image(
                        color_transform(
                            outputs[0][0].cpu().max(0)[1].data.unsqueeze(0)),
                        f'VAL output (epoch: {epoch}, step: {step})')
                else:
                    board.image(
                        color_transform(
                            outputs[0].cpu().max(0)[1].data.unsqueeze(0)),
                        f'VAL output (epoch: {epoch}, step: {step})')
                board.image(color_transform(targets[0].cpu().data),
                            f'VAL target (epoch: {epoch}, step: {step})')
                print("Time to paint images: ", time.time() - start_time_plot)
            if args.steps_loss > 0 and step % args.steps_loss == 0:
                average = sum(epoch_loss_val) / len(epoch_loss_val)
                print(
                    f'VAL loss: {average:0.4} (epoch: {epoch}, step: {step})',
                    "// Avg time/img: %.4f s" %
                    (sum(time_val) / len(time_val) / args.batch_size))

        average_epoch_loss_val = sum(epoch_loss_val) / len(epoch_loss_val)
        #scheduler.step(average_epoch_loss_val, epoch)  ## scheduler 1   # update lr if needed

        iouVal = 0
        if (doIouVal):
            _, iou_classes = iouEvalVal.getIoU()
            iouVal = iou_classes[0]
            iouStr = getColorEntry(iouVal) + '{:0.2f}'.format(
                iouVal * 100) + '\033[0m'
            print("EPOCH IoU on VAL set: ", iouStr, "%", iou_classes)

        # remember best valIoU and save checkpoint
        if iouVal == 0:
            current_acc = -average_epoch_loss_val
        else:
            current_acc = iouVal
        is_best = current_acc > best_acc
        best_acc = max(current_acc, best_acc)
        if enc:
            filenameCheckpoint = savedir + '/checkpoint_enc.pth.tar'
            filenameBest = savedir + '/model_best_enc.pth.tar'
        else:
            filenameCheckpoint = savedir + '/checkpoint.pth.tar'
            filenameBest = savedir + '/model_best.pth.tar'
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': str(model),
                'state_dict': model.state_dict(),
                'best_acc': best_acc,
                'optimizer': optimizer.state_dict(),
            }, is_best, filenameCheckpoint, filenameBest)

        #SAVE MODEL AFTER EPOCH
        if (enc):
            filename = f'{savedir}/model_encoder-{epoch:03}.pth'
            filenamebest = f'{savedir}/model_encoder_best.pth'
        else:
            filename = f'{savedir}/model-{epoch:03}.pth'
            filenamebest = f'{savedir}/model_best.pth'
        if args.epochs_save > 0 and step > 0 and step % args.epochs_save == 0:
            torch.save(model.state_dict(), filename)
            print(f'save: {filename} (epoch: {epoch})')
        if (is_best):
            torch.save(model.state_dict(), filenamebest)
            print(f'save: {filenamebest} (epoch: {epoch})')
            if (not enc):
                with open(savedir + "/best.txt", "w") as myfile:
                    myfile.write("Best epoch is %d, with Val-IoU= %.4f" %
                                 (epoch, iouVal))
            else:
                with open(savedir + "/best_encoder.txt", "w") as myfile:
                    myfile.write("Best epoch is %d, with Val-IoU= %.4f" %
                                 (epoch, iouVal))

        #SAVE TO FILE A ROW WITH THE EPOCH RESULT (train loss, val loss, train IoU, val IoU)
        #Epoch		Train-loss		Test-loss	Train-IoU	Test-IoU		learningRate
        with open(automated_log_path, "a") as myfile:
            myfile.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.8f" %
                         (epoch, average_epoch_loss_train,
                          average_epoch_loss_val, iouTrain, iouVal, usedLr))

    return (model)  #return model (convenience for encoder-decoder training)
Example #17
0
def train(hyp, logger, work_dir, device):

    epochs = opt.epochs
    batch_size = opt.batch_size
    total_batch_size = opt.total_batch_size
    weights = opt.weights
    rank = opt.local_rank

    # Configure
    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    #train_path = data_dict['train']
    #test_path = data_dict['val']
    train_path = os.path.join(data_dict['convertor_path'], 'images',
                              'train2017')
    test_path = os.path.join(data_dict['convertor_path'], 'images', 'val2017')
    nc, names = (1, ['item']) if opt.single_cls else (int(
        len(data_dict['names'])), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Create model
    model = Model(opt.cfg, nc=nc).to(device)

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    # default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
    # all-reduce operation is carried out during loss.backward().
    # Thus, there would be redundant all-reduce communications in a accumulation procedure,
    # which means, the result is still right but the training speed gets slower.
    # TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
    # in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    if hyp['optimizer'] == 'adam':  # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Load Model
    google_utils.attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0

    # 加载自己的模型
    if not weights.endswith('.pt'):
        ckpt = torch.load(weights, map_location=device).float()
        model.load_state_dict(ckpt.state_dict(), strict=True)
        logger.info(f'load myself ckpt: {weights}')

    if weights.endswith('.pt'):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            exclude = ['anchor']  # exclude keys
            ckpt['model'] = {
                k: v
                for k, v in ckpt['model'].float().state_dict().items()
                if k in model.state_dict() and not any(x in k for x in exclude)
                and model.state_dict()[k].shape == v.shape
            }
            model.load_state_dict(ckpt['model'], strict=False)
            print('Transferred %g/%g items from %s' %
                  (len(ckpt['model']), len(model.state_dict()), weights))
        except KeyError as e:
            s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
             "Please delete or update %s and try again, or use --weights '' to train from scratch." \
             % (weights, opt.cfg, weights, weights)
            raise KeyError(s) from e

        # load optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # epochs
        start_epoch = ckpt['epoch'] + 1
        if epochs < start_epoch:
            print(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt

    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level='O1',
                                          verbosity=0)

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.8 + 0.2  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # DP mode
    if device.type != 'cpu' and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and device.type != 'cpu' and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = torch_utils.ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if device.type != 'cpu' and rank != -1:
        model = DDP(model, device_ids=[rank], output_device=rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            local_rank=rank,
                                            world_size=opt.world_size)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Testloader
    if rank in [-1, 0]:
        # local_rank is set to -1. Because only the first process is expected to do evaluation.
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images,
                                       rect=True,
                                       local_rank=-1,
                                       world_size=opt.world_size)[0]

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Class frequency
    if rank in [-1, 0]:
        labels = np.concatenate(dataset.labels, 0)
        c = torch.tensor(labels[:, 0])  # classes
        # cf = torch.bincount(c.long(), minlength=nc) + 1.
        # model._initialize_biases(cf.to(device))

        # Check anchors
        if not opt.noautoanchor:
            check_anchors(dataset,
                          model=model,
                          thr=hyp['anchor_t'],
                          imgsz=imgsz)

        # save anchors
        m = model.module.model[-1] if hasattr(model,
                                              'module') else model.model[-1]
        anchors = []
        for i in range(3):
            for j in range(3):
                anchor = m.anchor_grid[i, 0, j, 0,
                                       0].cpu().detach().numpy().tolist()
                anchors.append(anchor)
        with open(os.path.join(work_dir, 'anchors.txt'), 'w') as f:
            for anchor in anchors:
                f.write(f'{anchor[0]},{anchor[1]}\n')

    # Start training
    t0 = time.time()
    nw = max(3 * nb,
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    if rank in [0, -1]:
        logger.info('Image sizes %g train, %g test' % (imgsz, imgsz_test))
        logger.info('Using %g dataloader workers' % dataloader.num_workers)
        logger.info('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        train_time_start = time.time()
        logger.info('')
        logger.info('epoch: {epoch} lr: {lr}'.format(
            epoch=epoch, lr=optimizer.param_groups[0]['lr']))

        model.train()

        # Update image weights (optional)
        # When in DDP mode, the generated indices will be broadcasted to synchronize dataset.
        if dataset.image_weights:
            # Generate indices.
            if rank in [-1, 0]:
                w = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                image_weights = labels_to_image_weights(dataset.labels,
                                                        nc=nc,
                                                        class_weights=w)
                dataset.indices = random.choices(
                    range(dataset.n), weights=image_weights,
                    k=dataset.n)  # rand weighted idx
            # Broadcast.
            if rank != -1:
                indices = torch.zeros([dataset.n], dtype=torch.int)
                if rank == 0:
                    indices[:] = torch.from_tensor(dataset.indices,
                                                   dtype=torch.int)
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        '''
		pbar = enumerate(dataloader)
		if rank in [-1, 0]:
			logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
			pbar = tqdm(pbar, total=nb)  # progress bar
		'''
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in enumerate(
                dataloader
        ):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss(pred, targets.to(device),
                                            model)  # scaled by batch_size
            if rank != -1:
                loss *= opt.world_size  # gradient averaged between devices in DDP mode
            if not torch.isfinite(loss):
                logger.info('WARNING: non-finite loss, ending training ',
                            loss_items)
                return results

            # Backward
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Optimize
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                if ema is not None:
                    ema.update(model)

            if i % 200 == 0:
                logger.info(
                    '[Epoch:{epoch}/{epochs} iter:{iter}] loss:{loss}'.format(
                        epoch=epoch,
                        epochs=epochs - 1,
                        iter=i,
                        loss=loss.item()))

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        train_time_end = time.time()
        logger.info('train time: {train_time}s'.format(
            train_time=int(train_time_end - train_time_start)))

        # Only the first process in DDP mode is allowed to log or save checkpoints.
        if rank in [-1, 0]:
            # mAP
            if ema is not None:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if (epoch % data_dict['eval_interval'] == 0
                    and epoch != 0) or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    data_dict,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    save_json=final_epoch
                    and opt.data.endswith(os.sep + 'coco.yaml'),
                    model=ema.ema.module
                    if hasattr(ema.ema, 'module') else ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=work_dir)
                map50, map = results[2], results[3]
                logger.info(f'eval:   [email protected]: {map50}    [email protected]:.95: {map}')

                # 保存模型
                ckpt = ema.ema.module if hasattr(ema.ema,
                                                 'module') else ema.ema
                torch.save(
                    ckpt,
                    os.path.join(work_dir,
                                 'epoch_{epoch}.pth'.format(epoch=epoch)))

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Example #18
0
def train(args, model, train_iter, test_iter):
    model.train()
    if args.which_optim == 'Adam':
        optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    elif args.which_optim == 'SGD':
        optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    elif args.which_optim == 'Adagrad':
        optimizer = optim.Adagrad(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    elif args.which_optim == 'ASGD':
        optimizer = optim.ASGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    m_max = -1
    whichmax = ''
    if not os.path.isdir(args.save_dir):
        os.makedirs(args.save_dir)
    output = open(os.path.join(args.save_dir, args.message + '.txt'), "w+", encoding='utf-8')
    for attr, value in sorted(args.__dict__.items()):
        output.write("\t{}={} \n".format(attr.upper(), value))
        output.flush()
    output.write('----------------------------------------------------')
    output.flush()

    if args.lr_scheduler is not None:
        scheduler = None
        if args.lr_scheduler == 'lambda':
            lambda2 = lambda epoch: 0.97 ** epoch
            scheduler = lr_scheduler.LambdaLR(optimizer, lambda2)
        elif args.lr_scheduler == 'step':
            scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.95)

    step = 0
    for epoch in range(1, args.epochs + 1):
        if args.lr_scheduler is not None:
            scheduler.step()
            print(scheduler.get_lr())
        print("第", epoch, "次迭代")
        output.write("第" + str(epoch) + "次迭代")
        output.flush()

        for batch in train_iter:
            feature, target = batch.text, batch.label
            if args.cuda:
                feature, target = feature.cuda(), target.cuda()
            optimizer.zero_grad()
            logit = model(feature, batch.target_start, batch.target_end)
            loss = F.cross_entropy(logit, target)
            loss.backward()

            if args.clip_norm is not None:
                utils.clip_grad_norm(model.parameters(), args.clip_norm)
            optimizer.step()

            step += 1
            if step % args.log_interval == 0:
                corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
                accuracy = 100.0 * corrects/batch.batch_size
                sys.stdout.write('\rBatch[{}] - loss: {:.6f}  '
                                 'acc: {:.4f}%({}/{})'.format(step,
                                                              loss.data[0],
                                                              accuracy,
                                                              corrects,
                                                              batch.batch_size))

            if step % args.test_interval == 0:
                # evaluate(args, model, test_iter)
                pass

            if step % args.save_interval == 0:
                save_prefix = os.path.join(args.save_dir, 'snapshot')
                save_path = '{}_step{}.pt'.format(save_prefix, step)
                torch.save(model, save_path)

                m_str, acc = test(args, model, test_iter)
                output.write(m_str + '-------' + str(step) + '\n')
                output.flush()
                if acc > m_max:
                    m_max = acc
                    whichmax = step
    output.write('\nmax is {} using {}'.format(m_max, whichmax))
    output.flush()
    output.close()
Example #19
0
def contrasitve_training_tune(epochs=20, learning_rate=0.00001, denum=40) :
    optimizer =Adam(
        model.parameters(), lr=learning_rate
    )
    if args.scheduler == "cosine":
        scheduler = lr_scheduler.CosineAnnealingLR(
            optimizer=optimizer, T_max=10, eta_min=0
        )
    else:
        scheduler = lr_scheduler.LambdaLR(
            optimizer=optimizer, lr_lambda=lambda epoch: 1 / ((epoch/denum) + 1)
        )

    model.train()
    
    start = time.time()
    for epoch in range(epochs):
        losses = AverageMeter()
        total_loss = 0
        total_len = 0
        total_correct = 0
        total_count = 0
        for text, label in train_loader:
            text1 = get_text(label, df_dict)
            padded_lists = []
            bsz = label.shape[0]
            for text in [text, text1] :
                encoded_list = [tokenizer.encode(t, add_special_tokens=True, max_length=MAX_SEQ_LEN, truncation=True) for t in text]
                padded_list = [e[:MAX_SEQ_LEN] + [0] * (MAX_SEQ_LEN-len(e[:MAX_SEQ_LEN])) for e in encoded_list]
                padded_lists.append(padded_list)

            sample = torch.cat([torch.tensor(padded_lists[0]), torch.tensor(padded_lists[1])], dim=0)
            sample, label = sample.to(device), label.to(device)
            label = torch.tensor(label)
            output = model(sample=sample, iscontra=True)
            o1, o2 = torch.split(output, [bsz, bsz], dim=0)
            outputs = torch.cat([o1.unsqueeze(1), o2.unsqueeze(1)], dim=1)
        
            loss = criterion(outputs, label)
            losses.update(loss.item(), args.batchsize)
    #         print(loss)
            
            total_len += len(label)
            total_loss += loss.item()
            total_count += 1
    
            optimizer.zero_grad()
            loss.backward()
            optimizer.step() 
        
    #            if (total_count + 1) % 1 == 0:
    #                contra_accuracy(test_df=test_df, tokenizer=tokenizer, model=model)

        writer.add_scalar("Loss/Train", total_loss / total_count, epoch + 1)
        writer.add_scalar("LearningRate/Train", scheduler.get_last_lr()[0], epoch + 1)
    
        print(
            "[Epoch {}/{}] Train Loss: {:.4f}, Learning Rate: {:.7f}".format(
                epoch + 1,
                epochs,
                total_loss / total_count,
                scheduler.get_last_lr()[0],
            )
	)
        scheduler.step()
    print("contrastive learning time :", time.time() - start)
Example #20
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF_RNet(word_vectors=word_vectors,
                       char_vectors=char_vectors,
                       hidden_size=args.hidden_size,
                       drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(), args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                cc_idxs = cc_idxs.to(device)
                qc_idxs = qc_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                # log_p1, log_p2 = model(cw_idxs, qw_idxs)
                log_p1, log_p2 = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
                # pdb.set_trace()
                y1, y2 = y1.to(device), y2.to(device)
                #pdb.set_trace()
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward(retain_graph=True)
                nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
                    del cw_idxs
                    del qw_idxs
                    del cc_idxs
                    del qc_idxs
                    del y1
                    del y2
                    torch.cuda.empty_cache()
Example #21
0
def train():
   
    parser = argparse.ArgumentParser()
    # 配置文件
    parser.add_argument(
        "--config-yml",
        default="exp_fvqa/exp2.yml",
        help=
        "Path to a config file listing reader, model and solver parameters.")

    parser.add_argument("--cpu-workers",
                        type=int,
                        default=8,
                        help="Number of CPU workers for dataloader.")

    parser.add_argument(
        "--save-dirpath",
        default="fvqa/exp_data/checkpoints",
        help=
        "Path of directory to create checkpoint directory and save checkpoints."
    )

    parser.add_argument(
        "--load-pthpath",
        default="",
        help="To continue training, path to .pth file of saved checkpoint.")

    parser.add_argument("--gpus", default="", help="gpus")
    parser.add_argument(
        "--overfit",
        action="store_true",
        help="Whether to validate on val split after every epoch.")

    parser.add_argument(
        "--validate",
        action="store_true",
        help="Whether to validate on val split after every epoch.")

    args = parser.parse_args()

    # set mannual seed
    torch.manual_seed(10)
    torch.cuda.manual_seed(10)
    cudnn.benchmark = True
    cudnn.deterministic = True

    config = yaml.load(open(args.config_yml))

    device = torch.device("cuda:0") if args.gpus != "cpu" else torch.device(
        "cpu")

    # Print config and args.
    print(yaml.dump(config, default_flow_style=False))
    for arg in vars(args):
        print("{:<20}: {}".format(arg, getattr(args, arg)))

 
    print('Loading TrainDataset...')
    train_dataset = FvqaTrainDataset(config, overfit=args.overfit)
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=config['solver']['batch_size'],
                                  num_workers=args.cpu_workers,
                                  shuffle=True,
                                  collate_fn=collate_fn)

    if args.validate:
        print('Loading TestDataset...')
        val_dataset = FvqaTestDataset(config, overfit=args.overfit)
        val_dataloader = DataLoader(val_dataset,
                                    batch_size=config['solver']['batch_size'],
                                    num_workers=args.cpu_workers,
                                    shuffle=True,
                                    collate_fn=collate_fn)


    print('Loading glove...')
    que_vocab = Vocabulary(config['dataset']['word2id_path'])
    glove = np.load(config['dataset']['glove_vec_path'])
    glove = torch.Tensor(glove)


    print('Building Model...')
    model = CMGCNnet(config,
                     que_vocabulary=que_vocab,
                     glove=glove,
                     device=device)

    if torch.cuda.device_count() > 1 and args.gpus != "cpu":
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = nn.DataParallel(model)

    model = model.to(device)
    print(model)


    iterations = len(train_dataset) // config["solver"]["batch_size"] + 1

    def lr_lambda_fun(current_iteration: int) -> float:
   
        current_epoch = float(current_iteration) / iterations
        if current_epoch <= config["solver"]["warmup_epochs"]:
            alpha = current_epoch / float(config["solver"]["warmup_epochs"])
            return config["solver"]["warmup_factor"] * (1. - alpha) + alpha
        else:
            idx = bisect(config["solver"]["lr_milestones"], current_epoch)
            return pow(config["solver"]["lr_gamma"], idx)


    optimizer = optim.Adamax(model.parameters(),
                             lr=config["solver"]["initial_lr"])
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda_fun)
    T = iterations * (config["solver"]["num_epochs"] -
                      config["solver"]["warmup_epochs"] + 1)
    scheduler2 = lr_scheduler.CosineAnnealingLR(
        optimizer, int(T), eta_min=config["solver"]["eta_min"], last_epoch=-1)

   
    summary_writer = SummaryWriter(log_dir=args.save_dirpath)
    checkpoint_manager = CheckpointManager(model,
                                           optimizer,
                                           args.save_dirpath,
                                           config=config)


    if args.load_pthpath == "":
        start_epoch = 0
    else:

        start_epoch = int(args.load_pthpath.split("_")[-1][:-4])

        model_state_dict, optimizer_state_dict = load_checkpoint(
            args.load_pthpath)
        if isinstance(model, nn.DataParallel):
            model.module.load_state_dict(model_state_dict)
        else:
            model.load_state_dict(model_state_dict)
        optimizer.load_state_dict(optimizer_state_dict)
        print("Loading resume model from {}...".format(args.load_pthpath))


    global_iteration_step = start_epoch * iterations

    for epoch in range(start_epoch, config['solver']['num_epochs']):

        print(f"\nTraining for epoch {epoch}:")

        train_answers = []
        train_preds = []

        for i, batch in enumerate(tqdm(train_dataloader)):
            optimizer.zero_grad()
            fact_batch_graph = model(batch)
            batch_loss = cal_batch_loss(fact_batch_graph,
                                        batch,
                                        device,
                                        neg_weight=0.1,
                                        pos_weight=0.9)

            batch_loss.backward()
            optimizer.step()

            fact_graphs = dgl.unbatch(fact_batch_graph)
            for i, fact_graph in enumerate(fact_graphs):
                train_pred = fact_graph.ndata['h'].squeeze()  # (num_nodes,1)
                train_preds.append(train_pred)  # [(num_nodes,)]
                train_answers.append(batch['facts_answer_id_list'][i])

            summary_writer.add_scalar('train/loss', batch_loss,
                                      global_iteration_step)
            summary_writer.add_scalar("train/lr",
                                      optimizer.param_groups[0]["lr"],
                                      global_iteration_step)
            summary_writer.add_text('train/loss', str(batch_loss.item()),
                                    global_iteration_step)
            summary_writer.add_text('train/lr',
                                    str(optimizer.param_groups[0]["lr"]),
                                    global_iteration_step)

            if global_iteration_step <= iterations * config["solver"][
                "warmup_epochs"]:
                scheduler.step(global_iteration_step)
            else:
                global_iteration_step_in_2 = iterations * config["solver"][
                    "warmup_epochs"] + 1 - global_iteration_step
                scheduler2.step(int(global_iteration_step_in_2))

            global_iteration_step = global_iteration_step + 1
            torch.cuda.empty_cache()


        checkpoint_manager.step()
        train_acc_1, train_acc_3 = cal_acc(
            train_answers, train_preds)
        print(
            "trainacc@1={:.2%} & trainacc@3={:.2%} "
                .format(train_acc_1, train_acc_3))
        summary_writer.add_scalars(
            'train/acc', {
                'acc@1': train_acc_1,
                'acc@3': train_acc_3

            }, epoch)


        if args.validate:
            model.eval()
            answers = []  # [batch_answers,...]
            preds = []  # [batch_preds,...]
            print(f"\nValidation after epoch {epoch}:")
            for i, batch in enumerate(tqdm(val_dataloader)):
                with torch.no_grad():
                    fact_batch_graph = model(batch)
                batch_loss = cal_batch_loss(fact_batch_graph,
                                            batch,
                                            device,
                                            neg_weight=0.1,
                                            pos_weight=0.9)

                summary_writer.add_scalar('test/loss', batch_loss, epoch)
                fact_graphs = dgl.unbatch(fact_batch_graph)
                for i, fact_graph in enumerate(fact_graphs):
                    pred = fact_graph.ndata['h'].squeeze()  # (num_nodes,1)
                    preds.append(pred)  # [(num_nodes,)]
                    answers.append(batch['facts_answer_id_list'][i])

            acc_1, acc_3 = cal_acc(answers, preds)
            print("acc@1={:.2%} & acc@3={:.2%} ".
                  format(acc_1, acc_3))
            summary_writer.add_scalars('test/acc', {
                'acc@1': acc_1,
                'acc@3': acc_3
            }, epoch)

            model.train()
            torch.cuda.empty_cache()
    print('Train finished !!!')
    summary_writer.close()
Example #22
0
    modelPA = AttnVGG(img_size=opts.img_size,
                      num_classes=100,
                      isAttention=opts.isAttention,
                      normalize_attn=opts.normalize_attn,
                      attn_before=opts.attn_before,
                      init='xavierUniform').to(device)

    loss_ceLoss = nn.CrossEntropyLoss()

    ### optimizer
    optimizer = optim.SGD(modelPA.parameters(),
                          lr=opts.lr,
                          momentum=0.9,
                          weight_decay=5e-4)
    lr_lambda = lambda epoch: np.power(0.5, int(epoch / 25))
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)

    num_aug = 3
    step = 0
    running_avg_accuracy = 0
    images_disp = []
    for epoch in range(opts.epochs):
        print('\nstart training ...\n')
        images_disp.clear()
        modelPA.train()
        for aug in range(num_aug):
            for i, (train_data, train_labels) in enumerate(trainloader, 0):
                train_data = train_data.to(device)
                train_labels = train_labels.to(device)

                if (aug == 0) and (
Example #23
0
def train(hyp):
    cfg = opt.cfg
    data = opt.data
    epochs = opt.epochs  # 500200 batches at bs 64, 117263 images = 273 epochs
    batch_size = opt.batch_size
    accumulate = max(round(64 / batch_size),
                     1)  # accumulate n times before optimizer update (bs 64)
    weights = opt.weights  # initial training weights
    imgsz_min, imgsz_max, imgsz_test = opt.img_size  # img sizes (min, max, test)

    # Image Sizes
    gs = 64  # (pixels) grid size
    assert math.fmod(
        imgsz_min,
        gs) == 0, '--img-size %g must be a %g-multiple' % (imgsz_min, gs)
    opt.multi_scale |= imgsz_min != imgsz_max  # multi if different (min, max)
    if opt.multi_scale:
        if imgsz_min == imgsz_max:
            imgsz_min //= 1.5
            imgsz_max //= 0.667
        grid_min, grid_max = imgsz_min // gs, imgsz_max // gs
        imgsz_min, imgsz_max = int(grid_min * gs), int(grid_max * gs)
    img_size = imgsz_max  # initialize with max size

    # Configure run
    init_seeds()
    data_dict = parse_data_cfg(data)
    train_path = data_dict['train']
    test_path = data_dict['valid']
    nc = 1 if opt.single_cls else int(
        data_dict['classes'])  # number of classes
    hyp['cls'] *= nc / 80  # update coco-tuned hyp['cls'] to current dataset

    # Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

    # Initialize model
    model = Darknet(cfg).to(device)

    # Optimizer
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in dict(model.named_parameters()).items():
        if '.bias' in k:
            pg2 += [v]  # biases
        elif 'Conv2d.weight' in k:
            pg1 += [v]  # apply weight_decay
        else:
            pg0 += [v]  # all else

    if opt.adam:
        # hyp['lr0'] *= 0.1  # reduce lr (i.e. SGD=5E-3, Adam=5E-4)
        optimizer = optim.Adam(pg0, lr=hyp['lr0'])
        # optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)
    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g Conv2d.weight, %g other' %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    start_epoch = 0
    best_fitness = 0.0
    attempt_download(weights)
    if weights.endswith('.pt'):  # pytorch format
        # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
        chkpt = torch.load(weights, map_location=device)

        # load model
        try:
            chkpt['model'] = {
                k: v
                for k, v in chkpt['model'].items()
                if model.state_dict()[k].numel() == v.numel()
            }
            model.load_state_dict(chkpt['model'], strict=False)
        except KeyError as e:
            s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " \
                "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
            raise KeyError(s) from e

        # load optimizer
        if chkpt['optimizer'] is not None:
            optimizer.load_state_dict(chkpt['optimizer'])
            best_fitness = chkpt['best_fitness']

        # load results
        if chkpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(chkpt['training_results'])  # write results.txt

        start_epoch = chkpt['epoch'] + 1
        del chkpt

    elif len(weights) > 0:  # darknet format
        # possible weights are '*.weights', 'yolov3-tiny.conv.15',  'darknet53.conv.74' etc.
        load_darknet_weights(model, weights)

    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level='O1',
                                          verbosity=0)

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.95 + 0.05  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    scheduler.last_epoch = start_epoch - 1  # see link below
    # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822

    # Plot lr schedule
    # y = []
    # for _ in range(epochs):
    #     scheduler.step()
    #     y.append(optimizer.param_groups[0]['lr'])
    # plt.plot(y, '.-', label='LambdaLR')
    # plt.xlabel('epoch')
    # plt.ylabel('LR')
    # plt.tight_layout()
    # plt.savefig('LR.png', dpi=300)

    # Initialize distributed training
    if device.type != 'cpu' and torch.cuda.device_count(
    ) > 1 and torch.distributed.is_available():
        dist.init_process_group(
            backend='nccl',  # 'distributed backend'
            init_method=
            'tcp://127.0.0.1:9999',  # distributed training init method
            world_size=1,  # number of nodes for distributed training
            rank=0)  # distributed training node rank
        model = torch.nn.parallel.DistributedDataParallel(
            model, find_unused_parameters=True)
        model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level

    # Dataset
    dataset = LoadImagesAndLabels(
        train_path,
        img_size,
        batch_size,
        augment=True,
        hyp=hyp,  # augmentation hyperparameters
        rect=opt.rect,  # rectangular training
        cache_images=opt.cache_images,
        single_cls=opt.single_cls)

    # Dataloader
    batch_size = min(batch_size, len(dataset))
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0,
              8])  # number of workers
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        num_workers=nw,
        shuffle=not opt.
        rect,  # Shuffle=True unless rectangular training is used
        pin_memory=True,
        collate_fn=dataset.collate_fn)

    # Testloader
    testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(
        test_path,
        imgsz_test,
        batch_size,
        hyp=hyp,
        rect=True,
        cache_images=opt.cache_images,
        single_cls=opt.single_cls),
                                             batch_size=batch_size,
                                             num_workers=nw,
                                             pin_memory=True,
                                             collate_fn=dataset.collate_fn)

    # Model parameters
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights

    # Model EMA
    ema = torch_utils.ModelEMA(model)

    # Start training
    nb = len(dataloader)  # number of batches
    n_burn = max(3 * nb,
                 500)  # burn-in iterations, max(3 epochs, 500 iterations)
    maps = np.zeros(nc)  # mAP per class
    # torch.autograd.set_detect_anomaly(True)
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    t0 = time.time()
    print('Image sizes %g - %g train, %g test' %
          (imgsz_min, imgsz_max, imgsz_test))
    print('Using %g dataloader workers' % nw)
    print('Starting training for %g epochs...' % epochs)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            w = model.class_weights.cpu().numpy() * (1 -
                                                     maps)**2  # class weights
            image_weights = labels_to_image_weights(dataset.labels,
                                                    nc=nc,
                                                    class_weights=w)
            dataset.indices = random.choices(range(dataset.n),
                                             weights=image_weights,
                                             k=dataset.n)  # rand weighted idx

        mloss = torch.zeros(4).to(device)  # mean losses
        print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls',
                                     'total', 'targets', 'img_size'))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device).float(
            ) / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
            targets = targets.to(device)

            # Burn-in
            if ni <= n_burn:
                xi = [0, n_burn]  # x interp
                model.gr = np.interp(
                    ni, xi,
                    [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, 64 / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    x['weight_decay'] = np.interp(
                        ni, xi, [0.0, hyp['weight_decay'] if j == 1 else 0.0])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-Scale
            if opt.multi_scale:
                if ni / accumulate % 1 == 0:  #  adjust img_size (67% - 150%) every 1 batch
                    img_size = random.randrange(grid_min, grid_max + 1) * gs
                sf = img_size / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to 32-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss(pred, targets, model)
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results

            # Backward
            loss *= batch_size / 64  # scale loss
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Optimize
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_cached() /
                             1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.3g' * 6) % ('%g/%g' %
                                               (epoch, epochs - 1), mem,
                                               *mloss, len(targets), img_size)
            pbar.set_description(s)

            # Plot
            if ni < 1:
                f = 'train_batch%g.jpg' % i  # filename
                res = plot_images(images=imgs,
                                  targets=targets,
                                  paths=paths,
                                  fname=f)
                if tb_writer:
                    tb_writer.add_image(f,
                                        res,
                                        dataformats='HWC',
                                        global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Update scheduler
        scheduler.step()

        # Process epoch results
        ema.update_attr(model)
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            is_coco = any([
                x in data
                for x in ['coco.data', 'coco2014.data', 'coco2017.data']
            ]) and model.nc == 80
            results, maps = test.test(cfg,
                                      data,
                                      batch_size=batch_size,
                                      imgsz=imgsz_test,
                                      model=ema.ema,
                                      save_json=final_epoch and is_coco,
                                      single_cls=opt.single_cls,
                                      dataloader=testloader,
                                      multi_label=ni > n_burn)

        # Write
        with open(results_file, 'a') as f:
            f.write(s + '%10.3g' * 7 % results +
                    '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp results.txt gs://%s/results/results%s.txt' %
                      (opt.bucket, opt.name))

        # Tensorboard
        if tb_writer:
            tags = [
                'train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5',
                'metrics/F1', 'val/giou_loss', 'val/obj_loss', 'val/cls_loss'
            ]
            for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                tb_writer.add_scalar(tag, x, epoch)

        # Update best mAP
        fi = fitness(np.array(results).reshape(
            1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            with open(results_file, 'r') as f:  # create checkpoint
                chkpt = {
                    'epoch':
                    epoch,
                    'best_fitness':
                    best_fitness,
                    'training_results':
                    f.read(),
                    'model':
                    ema.ema.module.state_dict()
                    if hasattr(model, 'module') else ema.ema.state_dict(),
                    'optimizer':
                    None if final_epoch else optimizer.state_dict()
                }

            # Save last, best and delete
            torch.save(chkpt, last)
            if (best_fitness == fi) and not final_epoch:
                torch.save(chkpt, best)
            del chkpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    n = opt.name
    if len(n):
        n = '_' + n if not n.isnumeric() else n
        fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
        for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                ispt = f2.endswith('.pt')  # is *.pt
                strip_optimizer(f2) if ispt else None  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' % (
                    f2, opt.bucket)) if opt.bucket and ispt else None  # upload

    if not opt.evolve:
        plot_results()  # save as results.png
    print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1,
                                                    (time.time() - t0) / 3600))
    dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
    torch.cuda.empty_cache()
    return results
Example #24
0
def train(hyp, opt, device, tb_writer=None):
    print(f'Hyperparameters {hyp}')
    log_dir = tb_writer.log_dir if tb_writer else 'runs/evolve'  # run directory
    wdir = str(Path(log_dir) / 'weights') + os.sep  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir + 'last.pt'
    best = wdir + 'best.pt'
    results_file = log_dir + os.sep + 'results.txt'
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # TODO: Use DDP logging. Only the first process is allowed to log.
    # Save run settings
    with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(Path(log_dir) / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Remove previous results
    if rank in [-1, 0]:
        for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
            os.remove(f)

    # Create model
    model = Model(opt.cfg, nc=nc).to(device)

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    # default DDP implementation is slow for accumulation according to: https://pytorch.org/docs/stable/notes/ddp.html
    # all-reduce operation is carried out during loss.backward().
    # Thus, there would be redundant all-reduce communications in a accumulation procedure,
    # which means, the result is still right but the training speed gets slower.
    # TODO: If acceleration is needed, there is an implementation of allreduce_post_accumulation
    # in https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/run_pretraining.py
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' %
          (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((
        (1 + math.cos(x * math.pi / epochs)) / 2)**1.0) * 0.8 + 0.2  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Load Model
    with torch_distributed_zero_first(rank):
        attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0
    if weights.endswith('.pt'):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            exclude = ['anchor']  # exclude keys
            ckpt['model'] = {
                k: v
                for k, v in ckpt['model'].float().state_dict().items()
                if k in model.state_dict() and not any(x in k for x in exclude)
                and model.state_dict()[k].shape == v.shape
            }
            model.load_state_dict(ckpt['model'], strict=False)
            print('Transferred %g/%g items from %s' %
                  (len(ckpt['model']), len(model.state_dict()), weights))
        except KeyError as e:
            s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
                "Please delete or update %s and try again, or use --weights '' to train from scratch." \
                % (weights, opt.cfg, weights, weights)
            raise KeyError(s) from e

        # load optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # epochs
        start_epoch = ckpt['epoch'] + 1
        if epochs < start_epoch:
            print(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        print('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=(opt.local_rank))

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            local_rank=rank,
                                            world_size=opt.world_size)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Testloader
    if rank in [-1, 0]:
        # local_rank is set to -1. Because only the first process is expected to do evaluation.
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images,
                                       rect=True,
                                       local_rank=-1,
                                       world_size=opt.world_size)[0]

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Class frequency
    if rank in [-1, 0]:
        labels = np.concatenate(dataset.labels, 0)
        c = torch.tensor(labels[:, 0])  # classes
        # cf = torch.bincount(c.long(), minlength=nc) + 1.
        # model._initialize_biases(cf.to(device))
        plot_labels(labels, save_dir=log_dir)
        if tb_writer:
            # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
            tb_writer.add_histogram('classes', c, 0)

        # Check anchors
        if not opt.noautoanchor:
            check_anchors(dataset,
                          model=model,
                          thr=hyp['anchor_t'],
                          imgsz=imgsz)

    # Start training
    t0 = time.time()
    nw = max(3 * nb,
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (
        0, 0, 0, 0, 0, 0, 0
    )  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    if rank in [0, -1]:
        print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
        print('Using %g dataloader workers' % dataloader.num_workers)
        print('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                w = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                image_weights = labels_to_image_weights(dataset.labels,
                                                        nc=nc,
                                                        class_weights=w)
                dataset.indices = random.choices(
                    range(dataset.n), weights=image_weights,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = torch.zeros([dataset.n], dtype=torch.int)
                if rank == 0:
                    indices[:] = torch.from_tensor(dataset.indices,
                                                   dtype=torch.int)
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        if rank in [-1, 0]:
            print(
                ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj',
                                       'cls', 'total', 'targets', 'img_size'))
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(
                        ni, xi,
                        [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi,
                                                  [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Autocast
            with amp.autocast(enabled=cuda):
                # Forward
                pred = model(imgs)

                # Loss
                loss, loss_items = compute_loss(pred, targets.to(device),
                                                model)  # scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                # if not torch.isfinite(loss):
                #     print('WARNING: non-finite loss, ending training ', loss_items)
                #     return results

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema is not None:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(Path(log_dir) /
                            ('train_batch%g.jpg' % ni))  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    if tb_writer and result is not None:
                        tb_writer.add_image(f,
                                            result,
                                            dataformats='HWC',
                                            global_step=epoch)
                        # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema is not None:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    save_json=final_epoch
                    and opt.data.endswith(os.sep + 'coco.yaml'),
                    model=ema.ema.module
                    if hasattr(ema.ema, 'module') else ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=log_dir)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results +
                        '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = [
                    'train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95', 'val/giou_loss', 'val/obj_loss',
                    'val/cls_loss'
                ]
                for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema.module if hasattr(ema, 'module') else ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict()
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = ('_'
             if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
        fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
        for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                ispt = f2.endswith('.pt')  # is *.pt
                strip_optimizer(f2) if ispt else None  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' % (
                    f2, opt.bucket)) if opt.bucket and ispt else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        print('%g epochs completed in %.3f hours.\n' %
              (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Example #25
0
    )

    # default value
    it = -1  # for the initialize value of `LambdaLR` and `BNMomentumScheduler`
    best_loss = 1e10
    start_epoch = 1

    # load status from checkpoint
    if args.checkpoint is not None:
        checkpoint_status = pt_utils.load_checkpoint(
            model, optimizer, filename=args.checkpoint.split(".")[0])
        if checkpoint_status is not None:
            it, start_epoch, best_loss = checkpoint_status

    lr_scheduler = lr_sched.LambdaLR(optimizer,
                                     lr_lambda=lr_lbmd,
                                     last_epoch=it)
    bnm_scheduler = pt_utils.BNMomentumScheduler(model,
                                                 bn_lambda=bn_lbmd,
                                                 last_epoch=it)

    it = max(it, 0)  # for the initialize value of `trainer.train`

    model_fn = model_fn_decorator(nn.CrossEntropyLoss())

    if args.visdom:
        viz = pt_utils.VisdomViz(port=args.visdom_port)
    else:
        viz = pt_utils.CmdLineViz()

    viz.text(pprint.pformat(vars(args)))
Example #26
0
def train(args, model, enc=False):
    best_acc = 0

    #TODO: calculate weights by processing dataset histogram (now its being set by hand from the torch values)
    #create a loder to run all images and calculate histogram of labels, then create weight array using class balancing

    weight = torch.ones(NUM_CLASSES)
    if (enc):
        weight[0] = 2.3653597831726
        weight[1] = 4.4237880706787
        # weight[2] = 2.9691488742828
        # weight[3] = 5.3442072868347
        # weight[4] = 5.2983593940735
        # weight[5] = 5.2275490760803
        # weight[6] = 5.4394111633301
        # weight[7] = 5.3659925460815
        # weight[8] = 3.4170460700989
        # weight[9] = 5.2414722442627
        # weight[10] = 4.7376127243042
        # weight[11] = 5.2286224365234
        # weight[12] = 5.455126285553
        # weight[13] = 4.3019247055054
        # weight[14] = 5.4264230728149
        # weight[15] = 5.4331531524658
        # weight[16] = 5.433765411377
        # weight[17] = 5.4631009101868
        # weight[18] = 5.3947434425354
    else:
        weight[0] = 2.8149201869965
        weight[1] = 6.9850029945374
        # weight[2] = 3.7890393733978
        # weight[3] = 9.9428062438965
        # weight[4] = 9.7702074050903
        # weight[5] = 9.5110931396484
        # weight[6] = 10.311357498169
        # weight[7] = 10.026463508606
        # weight[8] = 4.6323022842407
        # weight[9] = 9.5608062744141
        # weight[10] = 7.8698215484619
        # weight[11] = 9.5168733596802
        # weight[12] = 10.373730659485
        # weight[13] = 6.6616044044495
        # weight[14] = 10.260489463806
        # weight[15] = 10.287888526917
        # weight[16] = 10.289801597595
        # weight[17] = 10.405355453491
        # weight[18] = 10.138095855713

    # weight[19] = 0

    assert os.path.exists(
        args.datadir), "Error: datadir (dataset directory) could not be loaded"

    co_transform = MyCoTransform(enc, augment=True, height=args.height)  #1024)
    co_transform_val = MyCoTransform(enc, augment=False,
                                     height=args.height)  #1024)
    dataset_train = cityscapes(args.datadir, co_transform, 'train')
    dataset_val = cityscapes(args.datadir, co_transform_val, 'val')

    loader = DataLoader(dataset_train,
                        num_workers=args.num_workers,
                        batch_size=args.batch_size,
                        shuffle=True)
    loader_val = DataLoader(dataset_val,
                            num_workers=args.num_workers,
                            batch_size=args.batch_size,
                            shuffle=False)

    if args.cuda:
        weight = weight.cuda()
    criterion = CrossEntropyLoss2d(weight)
    print(type(criterion))

    savedir = f'../save/{args.savedir}'

    if (enc):
        automated_log_path = savedir + "/automated_log_encoder.txt"
        modeltxtpath = savedir + "/model_encoder.txt"
    else:
        automated_log_path = savedir + "/automated_log.txt"
        modeltxtpath = savedir + "/model.txt"

    if (not os.path.exists(automated_log_path)
        ):  #dont add first line if it exists
        with open(automated_log_path, "a") as myfile:
            myfile.write(
                "Epoch\t\tTrain-loss\t\tTest-loss\t\tTrain-IoU\t\tTest-IoU\t\tlearningRate"
            )

    with open(modeltxtpath, "w") as myfile:
        myfile.write(str(model))

    #TODO: reduce memory in first gpu: https://discuss.pytorch.org/t/multi-gpu-training-memory-usage-in-balance/4163/4        #https://github.com/pytorch/pytorch/issues/1893

    #optimizer = Adam(model.parameters(), 5e-4, (0.9, 0.999),  eps=1e-08, weight_decay=2e-4)     ## scheduler 1
    optimizer = Adam(model.parameters(),
                     5e-4, (0.9, 0.999),
                     eps=1e-08,
                     weight_decay=1e-4)  ## scheduler 2

    start_epoch = 1
    if args.resume:
        #Must load weights, optimizer, epoch and best value.
        if enc:
            filenameCheckpoint = savedir + '/checkpoint_enc.pth.tar'
        else:
            filenameCheckpoint = savedir + '/checkpoint.pth.tar'

        assert os.path.exists(
            filenameCheckpoint
        ), "Error: resume option was used but checkpoint was not found in folder"
        checkpoint = torch.load(filenameCheckpoint)
        start_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        best_acc = checkpoint['best_acc']
        print("=> Loaded checkpoint at epoch {})".format(checkpoint['epoch']))

    #scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5) # set up scheduler     ## scheduler 1
    lambda1 = lambda epoch: pow(
        (1 - ((epoch - 1) / args.num_epochs)), 0.9)  ## scheduler 2
    scheduler = lr_scheduler.LambdaLR(optimizer,
                                      lr_lambda=lambda1)  ## scheduler 2

    if args.visualize and args.steps_plot > 0:
        board = Dashboard(args.port)

    for epoch in range(start_epoch, args.num_epochs + 1):
        print("----- TRAINING - EPOCH", epoch, "-----")

        scheduler.step(epoch)  ## scheduler 2

        epoch_loss = []
        time_train = []

        doIouTrain = args.iouTrain
        doIouVal = args.iouVal

        if (doIouTrain):
            iouEvalTrain = iouEval(NUM_CLASSES)

        usedLr = 0
        for param_group in optimizer.param_groups:
            print("LEARNING RATE: ", param_group['lr'])
            usedLr = float(param_group['lr'])

        model.train()
        for step, (images, labels) in enumerate(loader):

            start_time = time.time()
            #print (labels.size())
            #print (np.unique(labels.numpy()))
            #print("labels: ", np.unique(labels[0].numpy()))
            #labels = torch.ones(4, 1, 512, 1024).long()
            if args.cuda:
                images = images.cuda()
                labels = labels.cuda()

            inputs = Variable(images)
            targets = Variable(labels)
            outputs = model(inputs, only_encode=enc)

            #print("targets", np.unique(targets[:, 0].cpu().data.numpy()))

            optimizer.zero_grad()
            loss = criterion(outputs, targets[:, 0])
            loss.backward()
            optimizer.step()

            epoch_loss.append(loss.data)
            time_train.append(time.time() - start_time)

            if (doIouTrain):
                #start_time_iou = time.time()
                iouEvalTrain.addBatch(
                    outputs.max(1)[1].unsqueeze(1).data, targets.data)
                #print ("Time to add confusion matrix: ", time.time() - start_time_iou)

            #print(outputs.size())
            if args.visualize and args.steps_plot > 0 and step % args.steps_plot == 0:
                start_time_plot = time.time()
                image = inputs[0].cpu().data
                #image[0] = image[0] * .229 + .485
                #image[1] = image[1] * .224 + .456
                #image[2] = image[2] * .225 + .406
                #print("output", np.unique(outputs[0].cpu().max(0)[1].data.numpy()))
                board.image(image, f'input (epoch: {epoch}, step: {step})')
                if isinstance(outputs, list):  #merge gpu tensors
                    board.image(
                        color_transform(
                            outputs[0][0].cpu().max(0)[1].data.unsqueeze(0)),
                        f'output (epoch: {epoch}, step: {step})')
                else:
                    board.image(
                        color_transform(
                            outputs[0].cpu().max(0)[1].data.unsqueeze(0)),
                        f'output (epoch: {epoch}, step: {step})')
                board.image(color_transform(targets[0].cpu().data),
                            f'target (epoch: {epoch}, step: {step})')
                print("Time to paint images: ", time.time() - start_time_plot)
            if args.steps_loss > 0 and step % args.steps_loss == 0:
                average = sum(epoch_loss) / len(epoch_loss)
                print(
                    f'loss: {average:0.4} (epoch: {epoch}, step: {step})',
                    "// Avg time/img: %.4f s" %
                    (sum(time_train) / len(time_train) / args.batch_size))

        average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)

        iouTrain = 0
        if (doIouTrain):
            iouTrain, iou_classes = iouEvalTrain.getIoU()
            iouStr = getColorEntry(iouTrain) + '{:0.2f}'.format(
                iouTrain * 100) + '\033[0m'
            print("EPOCH IoU on TRAIN set: ", iouStr, "%")

        #Validate on 500 val images after each epoch of training
        print("----- VALIDATING - EPOCH", epoch, "-----")
        model.eval()
        epoch_loss_val = []
        time_val = []

        if (doIouVal):
            iouEvalVal = iouEval(NUM_CLASSES)

        for step, (images, labels) in enumerate(loader_val):
            start_time = time.time()
            if args.cuda:
                images = images.cuda()
                labels = labels.cuda()

            inputs = Variable(
                images, volatile=True
            )  #volatile flag makes it free backward or outputs for eval
            targets = Variable(labels, volatile=True)
            outputs = model(inputs, only_encode=enc)

            loss = criterion(outputs, targets[:, 0])
            epoch_loss_val.append(loss.data)
            time_val.append(time.time() - start_time)

            #Add batch to calculate TP, FP and FN for iou estimation
            if (doIouVal):
                #start_time_iou = time.time()
                iouEvalVal.addBatch(
                    outputs.max(1)[1].unsqueeze(1).data, targets.data)
                #print ("Time to add confusion matrix: ", time.time() - start_time_iou)

            if args.visualize and args.steps_plot > 0 and step % args.steps_plot == 0:
                start_time_plot = time.time()
                image = inputs[0].cpu().data
                board.image(image, f'VAL input (epoch: {epoch}, step: {step})')
                if isinstance(outputs, list):  #merge gpu tensors
                    board.image(
                        color_transform(
                            outputs[0][0].cpu().max(0)[1].data.unsqueeze(0)),
                        f'VAL output (epoch: {epoch}, step: {step})')
                else:
                    board.image(
                        color_transform(
                            outputs[0].cpu().max(0)[1].data.unsqueeze(0)),
                        f'VAL output (epoch: {epoch}, step: {step})')
                board.image(color_transform(targets[0].cpu().data),
                            f'VAL target (epoch: {epoch}, step: {step})')
                print("Time to paint images: ", time.time() - start_time_plot)
            if args.steps_loss > 0 and step % args.steps_loss == 0:
                average = sum(epoch_loss_val) / len(epoch_loss_val)
                print(
                    f'VAL loss: {average:0.4} (epoch: {epoch}, step: {step})',
                    "// Avg time/img: %.4f s" %
                    (sum(time_val) / len(time_val) / args.batch_size))

        average_epoch_loss_val = sum(epoch_loss_val) / len(epoch_loss_val)
        #scheduler.step(average_epoch_loss_val, epoch)  ## scheduler 1   # update lr if needed

        iouVal = 0
        if (doIouVal):
            iouVal, iou_classes = iouEvalVal.getIoU()
            iouStr = getColorEntry(iouVal) + '{:0.2f}'.format(
                iouVal * 100) + '\033[0m'
            print("EPOCH IoU on VAL set: ", iouStr, "%")

        # remember best valIoU and save checkpoint
        if iouVal == 0:
            current_acc = -average_epoch_loss_val
        else:
            current_acc = iouVal
        is_best = current_acc > best_acc
        best_acc = max(current_acc, best_acc)
        if enc:
            filenameCheckpoint = savedir + '/checkpoint_enc.pth.tar'
            filenameBest = savedir + '/model_best_enc.pth.tar'
        else:
            filenameCheckpoint = savedir + '/checkpoint.pth.tar'
            filenameBest = savedir + '/model_best.pth.tar'
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'arch': str(model),
                'state_dict': model.state_dict(),
                'best_acc': best_acc,
                'optimizer': optimizer.state_dict(),
            }, is_best, filenameCheckpoint, filenameBest)

        #SAVE MODEL AFTER EPOCH
        if (enc):
            filename = f'{savedir}/model_encoder-{epoch:03}.pth'
            filenamebest = f'{savedir}/model_encoder_best.pth'
        else:
            filename = f'{savedir}/model-{epoch:03}.pth'
            filenamebest = f'{savedir}/model_best.pth'
        if args.epochs_save > 0 and step > 0 and step % args.epochs_save == 0:
            torch.save(model.state_dict(), filename)
            print(f'save: {filename} (epoch: {epoch})')
        if (is_best):
            torch.save(model.state_dict(), filenamebest)
            print(f'save: {filenamebest} (epoch: {epoch})')
            if (not enc):
                with open(savedir + "/best.txt", "w") as myfile:
                    myfile.write("Best epoch is %d, with Val-IoU= %.4f" %
                                 (epoch, iouVal))
            else:
                with open(savedir + "/best_encoder.txt", "w") as myfile:
                    myfile.write("Best epoch is %d, with Val-IoU= %.4f" %
                                 (epoch, iouVal))

        #SAVE TO FILE A ROW WITH THE EPOCH RESULT (train loss, val loss, train IoU, val IoU)
        #Epoch		Train-loss		Test-loss	Train-IoU	Test-IoU		learningRate
        with open(automated_log_path, "a") as myfile:
            myfile.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.8f" %
                         (epoch, average_epoch_loss_train,
                          average_epoch_loss_val, iouTrain, iouVal, usedLr))

    return (model)  #return model (convenience for encoder-decoder training)
Example #27
0
weight_decay = 5e-4
momentum = 0.9
nesterov = False

optimizer = optim.SGD(
    [{
        "params": model.backbone.parameters()
    }, {
        "params": model.classifier.parameters()
    }],
    lr=1.0,
    momentum=momentum,
    weight_decay=weight_decay,
    nesterov=nesterov,
)

le = len(train_loader)


def lambda_lr_scheduler(iteration, lr0, n, a):
    return lr0 * pow((1.0 - 1.0 * iteration / n), a)


lr_scheduler = lrs.LambdaLR(
    optimizer,
    lr_lambda=[
        partial(lambda_lr_scheduler, lr0=lr, n=num_epochs * le, a=0.9),
        partial(lambda_lr_scheduler, lr0=lr * 10.0, n=num_epochs * le, a=0.9),
    ],
)
Example #28
0
def main():
    # init logger
    init_log('global', args.save_dir, logging.INFO)
    logger = logging.getLogger('global')
    # print arguments
    for arg in vars(args):
        logger.info("{}: {}".format(arg, getattr(args, arg)))

    # device_name = "cuda:{}".format(args.gpu_id)
    # device = torch.device(device_name)

    # get device
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # build dataloader and model
    train_loader, test_loader = build_dataloader(args.base_dir, args.datadir,
                                                 args.num_points,
                                                 args.batch_size,
                                                 args.rotation_option)
    model = PointNetCLS(input_trans=args.input_trans,
                        feature_trans=args.feature_trans)

    # hl_graph = hl.build_graph(model, torch.zeros([5, 3, args.num_points], device=device))
    # hl_graph.save("graph.png", format="png")

    # check GPU numbers and deploy parallel
    parallel = False
    if torch.cuda.device_count() > 1:
        parallel = True
        logger.info("Let's use {:d} GPUs!".format(torch.cuda.device_count()))
        # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
        model = nn.DataParallel(model)
    model.to(device)

    logger.info("*" * 40)
    logger.info(model)
    logger.info("*" * 40)

    # optimizer settings
    optimizer = optim.Adam(
        model.parameters(), lr=args.lr,
        weight_decay=args.weight_decay)  # weight_decay就是L2正则化
    lr_lambda = lambda epoch: args.lr_decay**(epoch // args.lr_decay_step)
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=[lr_lambda])

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            model, _, args.start_epoch = restore_from_non_parallel(
                model, optimizer, args.resume)

    # set the best model
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0
    logger.info("Start training...")

    for epoch in range(args.start_epoch, args.epochs):
        logger.info('-' * 30)

        t0 = time.time()
        scheduler.step()
        writer.add_scalar('lr', scheduler.get_lr()[0], epoch)
        train_one_epoch(train_loader, model, optimizer, device, epoch)
        test_acc = test_one_epoch(test_loader, model, device, epoch)
        t1 = time.time()

        if test_acc > best_acc:
            best_model_wts = copy.deepcopy(model.state_dict())

        if epoch % 10 == 1:
            filename = os.path.join(args.save_dir,
                                    'checkpoint_e%d.pth' % (epoch + 1))
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict()
                },
                is_best=False,
                filename=filename)
            logger.info("Saved model : {}".format(filename))

        print_speed(epoch, t1 - t0, args.epochs)

    save_checkpoint(
        {
            'epoch': epoch + 1,
            'state_dict': best_model_wts,
            'optimizer': optimizer.state_dict()
        },
        is_best=True,
        filename=os.path.join(args.save_dir, 'model_best.pth'))

    writer.close()
Example #29
0
def get_scheduler(optimizer, opt):
    print('opt.lr_policy = [{}]'.format(opt.lr_policy))
    if opt.lr_policy == 'lambda':

        def lambda_rule(epoch):
            lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count -
                             opt.niter) / float(opt.niter_decay + 1)
            return lr_l

        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
    elif opt.lr_policy == 'step':
        scheduler = lr_scheduler.StepLR(optimizer,
                                        step_size=opt.lr_decay_iters,
                                        gamma=0.5)
    elif opt.lr_policy == 'step2':
        scheduler = lr_scheduler.StepLR(optimizer,
                                        step_size=opt.lr_decay_iters,
                                        gamma=0.1)
    elif opt.lr_policy == 'plateau':
        print('schedular=plateau')
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,
                                                   mode='min',
                                                   factor=0.1,
                                                   threshold=0.01,
                                                   patience=5)
    elif opt.lr_policy == 'plateau2':
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,
                                                   mode='min',
                                                   factor=0.2,
                                                   threshold=0.01,
                                                   patience=5)
    elif opt.lr_policy == 'step_warmstart':

        def lambda_rule(epoch):
            #print(epoch)
            if epoch < 5:
                lr_l = 0.1
            elif 5 <= epoch < 100:
                lr_l = 1
            elif 100 <= epoch < 200:
                lr_l = 0.1
            elif 200 <= epoch:
                lr_l = 0.01
            return lr_l

        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
    elif opt.lr_policy == 'step_warmstart2':

        def lambda_rule(epoch):
            #print(epoch)
            if epoch < 5:
                lr_l = 0.1
            elif 5 <= epoch < 50:
                lr_l = 1
            elif 50 <= epoch < 100:
                lr_l = 0.1
            elif 100 <= epoch:
                lr_l = 0.01
            return lr_l

        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
    else:

        return NotImplementedError(
            'learning rate policy [%s] is not implemented', opt.lr_policy)
    return scheduler
Example #30
0
    def train_model(self, config, trainset, sampler, cut_layer=None):  # pylint: disable=unused-argument
        """The training loop for YOLOv5.

        Arguments:
        config: A dictionary of configuration parameters.
        trainset: The training dataset.
        cut_layer (optional): The layer which training should start from.
        """

        logging.info("[Client #%d] Setting up training parameters.",
                     self.client_id)

        batch_size = config['batch_size']
        total_batch_size = batch_size
        epochs = config['epochs']

        cuda = (self.device != 'cpu')
        nc = Config().data.num_classes  # number of classes
        names = Config().data.classes  # class names

        with open(Config().trainer.train_params) as f:
            hyp = yaml.load(f, Loader=yaml.SafeLoader)  # load hyps

        freeze = []  # parameter names to freeze (full or partial)
        for k, v in self.model.named_parameters():
            v.requires_grad = True  # train all layers
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False

        nbs = 64  # nominal batch size
        accumulate = max(round(nbs / total_batch_size),
                         1)  # accumulate loss before optimizing
        hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

        # Sending the model to the device used for training
        self.model.to(self.device)

        pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
        for k, v in self.model.named_modules():
            if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
                pg2.append(v.bias)  # biases
            if isinstance(v, nn.BatchNorm2d):
                pg0.append(v.weight)  # no decay
            elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
                pg1.append(v.weight)  # apply decay

        # Initializing the optimizer
        if Config().trainer.optimizer == 'Adam':
            optimizer = optim.Adam(pg0,
                                   lr=hyp['lr0'],
                                   betas=(hyp['momentum'],
                                          0.999))  # adjust beta1 to momentum
        else:
            optimizer = optim.SGD(pg0,
                                  lr=hyp['lr0'],
                                  momentum=hyp['momentum'],
                                  nesterov=True)

        optimizer.add_param_group({
            'params': pg1,
            'weight_decay': hyp['weight_decay']
        })  # add pg1 with weight_decay
        optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
        logging.info(
            '[Client #%s] Optimizer groups: %g .bias, %g conv.weight, %g other',
            self.client_id, len(pg2), len(pg1), len(pg0))
        del pg0, pg1, pg2

        if Config().trainer.linear_lr:
            lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[
                'lrf']  # linear
        else:
            lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
        lr_schedule = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

        # Image sizes
        nl = self.model.model[
            -1].nl  # number of detection layers (used for scaling hyp['obj'])

        # Trainloader
        logging.info("[Client #%d] Loading the dataset.", self.client_id)
        train_loader = self.train_loader(batch_size,
                                         trainset,
                                         sampler,
                                         cut_layer=cut_layer)
        nb = len(train_loader)

        # Model parameters
        hyp['box'] *= 3. / nl  # scale to layers
        hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
        hyp['obj'] *= (Config().data.image_size /
                       640)**2 * 3. / nl  # scale to image size and layers
        self.model.nc = nc  # attach number of classes to model
        self.model.hyp = hyp  # attach hyperparameters to model
        self.model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
        self.model.names = names

        # Start training
        nw = max(
            round(hyp['warmup_epochs'] * nb),
            1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
        last_opt_step = -1
        scaler = amp.GradScaler(enabled=cuda)
        compute_loss = ComputeLoss(self.model)  # init loss class

        for epoch in range(1, epochs + 1):
            self.model.train()
            logging.info(
                ('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                       'labels', 'img_size'))
            pbar = enumerate(train_loader)
            pbar = tqdm(pbar, total=nb)
            mloss = torch.zeros(3, device=self.device)  # mean losses
            optimizer.zero_grad()

            for i, (imgs, targets, *__) in pbar:
                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs, targets = imgs.to(self.device), targets.to(self.device)

                # Warmup
                if ni <= nw:
                    xi = [0, nw]  # x interp
                    accumulate = max(
                        1,
                        np.interp(ni, xi, [1, nbs / batch_size]).round())
                    for j, x in enumerate(optimizer.param_groups):
                        # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        x['lr'] = np.interp(ni, xi, [
                            hyp['warmup_bias_lr'] if j == 2 else 0.0,
                            x['initial_lr'] * lf(epoch)
                        ])
                        if 'momentum' in x:
                            x['momentum'] = np.interp(
                                ni, xi,
                                [hyp['warmup_momentum'], hyp['momentum']])

                # Forward
                with amp.autocast(enabled=cuda):
                    if cut_layer is None:
                        pred = self.model(imgs)
                    else:
                        pred = self.model.forward_from(imgs, cut_layer)

                    loss, loss_items = compute_loss(
                        pred,
                        targets.to(self.device))  # loss scaled by batch_size

                # Backward
                scaler.scale(loss).backward()

                # Optimize
                if ni - last_opt_step >= accumulate:
                    scaler.step(optimizer)  # optimizer.step
                    scaler.update()
                    optimizer.zero_grad()
                    last_opt_step = ni

                # Print
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'
                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
                                     (f'{epoch}/{epochs}', mem, *mloss,
                                      targets.shape[0], imgs.shape[-1]))

            lr_schedule.step()