def test_prepare_video(self): # at each timestep the sum over all other dimensions of the video should stay the same V_before = np.random.random((4, 10, 3, 20, 20)) V_after = _prepare_video(np.copy(V_before)) V_before = np.swapaxes(V_before, 0, 1) V_before = np.reshape(V_before, newshape=(10, -1)) V_after = np.reshape(V_after, newshape=(10, -1)) np.testing.assert_array_almost_equal(np.sum(V_before, axis=1), np.sum(V_after, axis=1))
def test_numpy_vid_uint8(self): V_input = np.random.randint(0, 256, (16, 30, 3, 28, 28)).astype(np.uint8) V_after = _prepare_video(np.copy(V_input)) * 255 total_frame = V_input.shape[1] V_input = np.swapaxes(V_input, 0, 1) for f in range(total_frame): x = np.reshape(V_input[f], newshape=(-1)) y = np.reshape(V_after[f], newshape=(-1)) np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))
def test_prepare_video(self): # At each timeframe, the sum over all other # dimensions of the video should be the same. shapes = [(16, 30, 3, 28, 28), (36, 30, 3, 28, 28), (19, 29, 3, 23, 19), (3, 3, 3, 3, 3)] for s in shapes: V_input = np.random.random(s) V_after = _prepare_video(np.copy(V_input)) total_frame = s[1] V_input = np.swapaxes(V_input, 0, 1) for f in range(total_frame): x = np.reshape(V_input[f], newshape=(-1)) y = np.reshape(V_after[f], newshape=(-1)) np.testing.assert_array_almost_equal(np.sum(x), np.sum(y))