Example #1
0
def nao_train(train_queue, model, optimizer):
    objs = utils.AvgrageMeter()
    mse = utils.AvgrageMeter()
    nll = utils.AvgrageMeter()
    model.train()
    for step, sample in enumerate(train_queue):
        encoder_input = sample['encoder_input']
        encoder_target = sample['encoder_target']
        decoder_input = sample['decoder_input']
        decoder_target = sample['decoder_target']

        encoder_input = encoder_input.cuda()
        encoder_target = encoder_target.cuda().requires_grad_()
        decoder_input = decoder_input.cuda()
        decoder_target = decoder_target.cuda()

        optimizer.zero_grad()
        predict_value, log_prob, arch = model(encoder_input, decoder_input)
        loss_1 = F.mse_loss(predict_value.squeeze(), encoder_target.squeeze())
        loss_2 = F.nll_loss(log_prob.contiguous().view(-1, log_prob.size(-1)),
                            decoder_target.view(-1))
        loss = args.trade_off * loss_1 + (1 - args.trade_off) * loss_2
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_bound)
        optimizer.step()

        n = encoder_input.size(0)
        objs.update(loss.data, n)
        mse.update(loss_1.data, n)
        nll.update(loss_2.data, n)

    return objs.avg, mse.avg, nll.avg
Example #2
0
def infer(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    with torch.no_grad():
        for step, (input, target) in enumerate(valid_queue):
            input = input.cuda()
            target = target.cuda(non_blocking=True)

            logits, _ = model(input)
            loss = criterion(logits, target)

            prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
            n = input.size(0)
            objs.update(loss.data, n)
            top1.update(prec1.data, n)
            top5.update(prec5.data, n)

            if step % args.report_freq == 0:
                end_time = time.time()
                if step == 0:
                    duration = 0
                    start_time = time.time()
                else:
                    duration = end_time - start_time
                    start_time = time.time()
                logging.info(
                    'VALID Step: %03d Objs: %e R1: %f R5: %f Duration: %ds',
                    step, objs.avg, top1.avg, top5.avg, duration)

    return top1.avg, top5.avg, objs.avg
Example #3
0
def infer(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    with torch.no_grad():
        for step, (input, target) in enumerate(valid_queue):
            # input = Variable(input, volatile=True).cuda()
            # target = Variable(target, volatile=True).cuda(async=True)
            input = input.to(device)
            target = target.to(device)

            logits, _ = model(input)
            loss = criterion(logits, target)

            prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
            n = input.size(0)
            loss_data = loss.data[0] if loss.dim() != 0 else loss.item()
            prec1_data = prec1.data[0] if prec1.dim() != 0 else prec1.item()
            prec5_data = prec5.data[0] if prec5.dim() != 0 else prec5.item()
            objs.update(loss_data, n)
            top1.update(prec1_data, n)
            top5.update(prec5_data, n)

            if step % args.report_freq == 0:
                logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg,
                             top5.avg)

    return top1.avg, objs.avg
Example #4
0
def train(train_queue, model, criterion, optimizer):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.train()

    for step, (input, target) in enumerate(train_queue):
        target = target.cuda(async=True)
        input = input.cuda()
        input = Variable(input)
        target = Variable(target)

        optimizer.zero_grad()
        logits, logits_aux = model(input)
        loss = criterion(logits, target)
        if args.auxiliary:
            loss_aux = criterion(logits_aux, target)
            loss += args.auxiliary_weight * loss_aux

        loss.backward()
        nn.utils.clip_grad_norm(model.parameters(), args.grad_clip)
        optimizer.step()

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        n = input.size(0)
        objs.update(loss.data[0], n)
        top1.update(prec1.data[0], n)
        top5.update(prec5.data[0], n)

        if step % args.report_freq == 0:
            logging.info('train %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

    return top1.avg, objs.avg
Example #5
0
def infer(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()

    model.eval()
    with torch.no_grad():
        for step, (data, target) in enumerate(valid_queue):
            data = data.cuda()
            target = target.cuda()

            logits, _ = model(data)
            loss = criterion(logits, target)

            prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
            n = data.size(0)
            objs.update(loss.item(), n)
            top1.update(prec1.item(), n)
            top5.update(prec5.item(), n)

            if step % args.report_freq == 0:
                logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg,
                             top5.avg)

    return top1.avg, top5.avg, objs.avg
Example #6
0
def infer(valid_queue, model, criterion):
    global is_multi_gpu

    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()

    # nn.BatchNorm layers will use their running stats (in the default mode) and nn.Dropout will be deactivated.
    model.eval()

    for step, (input, target) in enumerate(valid_queue):
        with torch.no_grad():
            input = input.cuda()
            target = target.cuda(non_blocking=True)

            logits, _ = model(input)
            loss = criterion(logits, target)

            prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
            n = input.size(0)
            objs.update(loss.item(), n)
            top1.update(prec1.item(), n)
            top5.update(prec5.item(), n)

            if step % args.report_freq == 0:
                logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

    return top1.avg, objs.avg
Example #7
0
def train(train_queue, model, criterion, optimizer):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    model.train()

    for step, (input, target) in enumerate(train_queue):
        input = input.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)

        optimizer.zero_grad()
        logits, logits_aux = model(input)
        loss = criterion(logits, target)
        if args.auxiliary:
            loss_aux = criterion(logits_aux, target)
            loss += args.auxiliary_weight * loss_aux
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
        optimizer.step()

        prec1, _ = utils.accuracy(logits, target, topk=(1, 5))
        n = input.size(0)
        objs.update(loss.data.item(), n)
        top1.update(prec1.data.item(), n)

        if step % args.report_freq == 0:
            logging.info('Train Step: %03d Objs: %e Acc: %f', step, objs.avg,
                         top1.avg)

    return top1.avg, objs.avg
def infer(valid_queue, model, criterion, writer_dict):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    # tensorboard logger
    writer = writer_dict['writer']
    val_step = writer_dict['val_steps']

    for step, (input, target) in enumerate(valid_queue):
        input = Variable(input, volatile=True).cuda()
        # target = Variable(target, volatile=True).cuda(async=True)
        target = Variable(target, volatile=True).cuda()

        logits = model(input)
        loss = criterion(logits, target)
        writer.add_scalar('val_loss', loss.data, val_step)

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        writer.add_scalar('val_prec1', prec1.data, val_step)
        writer.add_scalar('val_prec5', prec5.data, val_step)
        n = input.size(0)
        objs.update(loss.data, n)
        top1.update(prec1.data, n)
        top5.update(prec5.data, n)

        val_step += 1
        writer_dict['val_steps'] += 1

        if step % args.report_freq == 0:
            logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg,
                         top5.avg)

    return top1.avg, objs.avg
Example #9
0
def train(train_queue, model, criterion, optimizer, logger):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()

    for step, (input, target) in enumerate(train_queue):
        n = input.size(0)
        input = Variable(input.float(), requires_grad=False).to(device)
        target = Variable(target.long(), requires_grad=False).to(device)
        logits = model(input)
        loss = criterion(logits, target)
        optimizer.zero_grad()
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
        optimizer.step()

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))

        objs.update(loss.item(), n)
        top1.update(prec1.item(), n)

        if step % args.report_freq == 0:
            logger.info('time = %s, train %03d %e %f',
                        str(utils.get_unix_timestamp()), step, objs.avg,
                        top1.avg)
            print('time = {}, train {} {}'.format(
                str(utils.get_unix_timestamp()), step, objs.avg))

    return objs.avg, top1.avg
def infer(valid_queue, model, criterion, args, gpu):
  '''
  在最后一个epoch后打印验证集计算结果
  '''
  print('正在进行测试!!!!')
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()

  for step, (input, target) in enumerate(valid_queue):
    input = input.cuda(non_blocking=True)
    target = target.cuda(non_blocking=True)
    logits = model(input) # 计算预测结果
    loss = criterion(logits, target)

    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
    n = input.size(0)
    objs.update(loss.item(), n)
    top1.update(prec1.item(), n)
    top5.update(prec5.item(), n)
    if gpu == 0:
      if step % args.report_freq == 0:
        logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
        print('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
  return top1.avg, objs.avg
Example #11
0
def infer(valid_queue, model, criterion, temperature, logger=None, batch_num=-1,
          log_frequence=10):
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()
  # logger.info("Start new epoch inference")

  tic = time.time()
  for step, (input, target) in enumerate(valid_queue):
    input = input.cuda()
    target = target.cuda()

    logits , _, _ = model(input , temperature)
    loss = criterion(logits, target)
    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))

    n = input.size(0)
    objs.update(loss.data , n)
    top1.update(prec1.data , n)
    top5.update(prec5.data , n)
    if logger is not None:
      if step > 0 and step % log_frequence == 0:
        toc = time.time()
        speed = 1.0 * log_frequence * n / (toc - tic)
        if batch_num > 0:
          logger.info("Step[%d/%d] speed[%.4f samples/s] loss[%.6f] acc[%.4f]" % (step, batch_num, 
                          speed, loss.detach().cpu().numpy(), \
                          prec1.detach().cpu().numpy() / 100.0))
        else:
          logger.info("Step[%d] speed[%.4f samples/s] loss[%.6f] acc[%.4f]" % (step, 
                          speed, loss.detach().cpu().numpy(), \
                          prec1.detach().cpu().numpy() / 100.0))
        tic = time.time()
  return top1.avg, top5.avg, objs.avg
Example #12
0
def test(test_queue, model, criterion, device):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    correct = 0
    total = 0
    for step, (inputs, targets) in enumerate(test_queue):
        with torch.no_grad():
            inputs, targets = Variable(inputs.to(device)), Variable(
                targets.to(device))
            logits = model(inputs)
            loss = criterion(logits, targets)

        total += inputs.size(0)
        _, predict = torch.max(logits.data, 1)
        correct += predict.eq(targets.data).cpu().sum().item()

        prec1, prec5 = utils.accuracy(logits, targets, topk=(1, 5))
        n = inputs.size(0)
        objs.update(loss.data.item(), n)
        top1.update(prec1.data.item(), n)
        top5.update(prec5.data.item(), n)

        if step % args.report_freq == 0:
            logging.info('test %03d loss: %.3f top1: %f top5: %f', step,
                         objs.avg, top1.avg, top5.avg)
    logging.info('Testing:  Acc=%.3f(%d/%d)' %
                 (correct / total, correct, total))

    return top1.avg, objs.avg
Example #13
0
def infer(valid_queue, model, criterion):
    root = logging.getLogger()
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    for step, (input, target) in enumerate(valid_queue):
        input = input.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)

        logits, _ = model(input)
        loss = criterion(logits, target)

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        n = input.size(0)
        objs.update(loss.item(), n)
        top1.update(prec1.item(), n)
        top5.update(prec5.item(), n)

        if step % args.report_freq == 0:
            root.info('%s %03d %e %f %f', valid_queue.name, step, objs.avg,
                      top1.avg, top5.avg)

    return top1.avg, objs.avg
Example #14
0
def infer(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    with torch.no_grad():
        for step, (input, target) in enumerate(valid_queue):
            input = input.cuda()
            target = target.cuda(non_blocking=True)

            logits = model(input)
            loss = criterion(logits, target)

            prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
            n = input.size(0)
            objs.update(loss.data, n)
            top1.update(prec1.data, n)
            top5.update(prec5.data, n)

            if step % args.report_freq == 0:
                logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg,
                             top5.avg)
            if 'debug' in args.save:
                break

    return top1.avg, objs.avg
        def train_step(train_queue, optimizer):
            objs = utils.AvgrageMeter()
            nll = utils.AvgrageMeter()

            for step, sample in enumerate(train_queue):
                fw_adjs = sample['fw_adjs']
                bw_adjs = sample['bw_adjs']
                operations = sample['operations']
                num_nodes = sample['num_nodes']
                sequence = sample['sequence']

                optimizer.zero_grad()
                log_prob, predicted_value = model(fw_adjs,
                                                  bw_adjs,
                                                  operations,
                                                  num_nodes,
                                                  targets=sequence)
                # print("input: {} output : {}".format(log_prob.size(), sequence.size()))
                loss = F.nll_loss(
                    log_prob.contiguous().view(-1, log_prob.size(-1)),
                    sequence.view(-1))
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(),
                                               conf.grad_bound)
                optimizer.step()

                n = sequence.size(0)
                objs.update(loss.data, n)
                nll.update(loss.data, n)
                # logging.info("step : %04d, objs: %.6f, nll : %.6f", step, objs,avgs, nll)

            return objs.avg, nll.avg
Example #16
0
def test(test_queue, model, criterion, logger):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()

    with torch.no_grad():
        for step, (input, target) in enumerate(test_queue):
            n = input.size(0)
            input = Variable(input.float()).to(device)
            target = Variable(target.long()).to(device)

            logits = model(input)
            loss = criterion(logits, target)

            prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))

            objs.update(loss.item(), n)
            top1.update(prec1.item(), n)

            if step % args.report_freq == 0:
                logger.info('time = %s, test %03d %e %f',
                            str(utils.get_unix_timestamp()), step, objs.avg,
                            top1.avg)
                print('time = {}, test {} {}'.format(
                    str(utils.get_unix_timestamp()), step, objs.avg))

    return objs.avg, top1.avg
Example #17
0
def train(train_queue, model, criterion, optimizer):
    global is_multi_gpu
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.train()

    for step, (input, target) in enumerate(train_queue):
        n = input.size(0)
        input = input.cuda()
        target = target.cuda(non_blocking=True)

        optimizer.zero_grad()
        logits, logits_aux = model(input)
        loss = criterion(logits, target)
        if args.auxiliary:
            loss_aux = criterion(logits_aux, target)
            loss += args.auxiliary_weight * loss_aux
        loss.backward()
        parameters = model.module.parameters() if is_multi_gpu else model.parameters()
        nn.utils.clip_grad_norm_(parameters, args.grad_clip)
        optimizer.step()

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        objs.update(loss.item(), n)
        top1.update(prec1.item(), n)
        top5.update(prec5.item(), n)

        if step % args.report_freq == 0:
            logging.info('train %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
            wandb.log({"evaluation_train_accuracy_avg": objs.avg}, step=step)
            wandb.log({"evaluation_train_accuracy_top1": top1.avg}, step=step)
            wandb.log({"evaluation_train_accuracy_top5": top5.avg}, step=step)

    return top1.avg, objs.avg
Example #18
0
def nao_valid(queue, model):
    pa = utils.AvgrageMeter()
    hs = utils.AvgrageMeter()
    mse = utils.AvgrageMeter()
    with torch.no_grad():
        model.eval()
        for step, sample in enumerate(queue):
            encoder_input = sample['encoder_input']
            encoder_target = sample['encoder_target']
            decoder_target = sample['decoder_target']

            encoder_input = encoder_input.cuda()
            encoder_target = encoder_target.cuda()
            decoder_target = decoder_target.cuda()

            predict_value, logits, arch = model(encoder_input)
            n = encoder_input.size(0)
            pairwise_acc = utils.pairwise_accuracy(
                encoder_target.data.squeeze().tolist(),
                predict_value.data.squeeze().tolist())
            hamming_dis = utils.hamming_distance(
                decoder_target.data.squeeze().tolist(),
                arch.data.squeeze().tolist())
            mse.update(
                F.mse_loss(predict_value.data.squeeze(),
                           encoder_target.data.squeeze()), n)
            pa.update(pairwise_acc, n)
            hs.update(hamming_dis, n)
    return mse.avg, pa.avg, hs.avg
Example #19
0
def infer(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    for step, (input, target) in enumerate(valid_queue):
        input = Variable(input, volatile=True).cuda()
        target = Variable(target, volatile=True).cuda(async=True)

        logits = model(input)
        loss = criterion(logits, target)

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        n = input.size(0)
        objs.update(loss.data[0], n)
        top1.update(prec1.data[0], n)
        top5.update(prec5.data[0], n)

        if step % args.report_freq == 0:
            logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg,
                         top5.avg)
            if args.debug:
                break

    return top1.avg, objs.avg
Example #20
0
def infer(valid_loader, model, controller, criterion):
    total_loss = utils.AvgrageMeter()
    total_top1 = utils.AvgrageMeter()
    model.eval()
    controller.eval()

    with torch.no_grad():
        for step in range(20):
            data, target = valid_loader.next_batch()
            data = data.cuda()
            target = target.cuda()

            dag, _, _ = controller()

            logits, auxs = model(dag, data)
            loss = criterion(logits, target).cuda()

            prec1 = utils.accuracy(logits, target)[0]
            n = data.size(0)
            total_loss.update(loss.item(), n)
            total_top1.update(prec1.item(), n)

            logging.info('valid  {:0>3d} {:.6f} {:.3f}'.format(
                step, loss.item(), prec1.item()))
            logging.info('{}'.format([i for i in dag]))
            with open(os.path.join(args.save, 'dag_all.txt'), 'a') as f:
                f.write('{:.3f} {} infer\n'.format(prec1.item(),
                                                   [i for i in dag]))  #
            del loss, logits

    return total_top1.avg
def infer(valid_queue, model, criterion):
    global is_multi_gpu

    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    for step, (input, target) in enumerate(valid_queue):
        input = input.cuda()
        target = target.cuda()

        logits = model(input)
        loss = criterion(logits, target)

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        n = input.size(0)
        objs.update(loss.item(), n)
        top1.update(prec1.item(), n)
        top5.update(prec5.item(), n)

        if step % args.report_freq == 0:
            logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg,
                         top5.avg)

    return top1.avg, objs.avg, loss
Example #22
0
def train(epoch, train_queue, valid_queue, model, architect, criterion,
          optimizer, lr):
    global is_multi_gpu

    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()

    for step, (input, target) in enumerate(train_queue):
        # logging.info("epoch %d, step %d START" % (epoch, step))
        model.train()
        n = input.size(0)

        model.set_tau(args.tau_max - epoch * 1.0 / args.epochs *
                      (args.tau_max - args.tau_min))

        input = input.cuda()
        target = target.cuda()

        # get a random minibatch from the search queue with replacement
        input_search, target_search = next(iter(valid_queue))
        input_search = input_search.cuda()
        target_search = target_search.cuda()

        # Update architecture alpha by Adam-SGD
        # logging.info("step %d. update architecture by Adam. START" % step)
        #
        if args.optimization == "AOS":
            architect.step_AOS(input, target, input_search, target_search)
        else:
            architect.step_milenas(input, target, input_search, target_search,
                                   1, 1)

        # logging.info("step %d. update architecture by Adam. FINISH" % step)
        # Update weights w by SGD, ignore the weights that gained during architecture training

        # logging.info("step %d. update weight by SGD. START" % step)
        optimizer.zero_grad()
        logits = model(input)
        loss = criterion(logits, target)

        loss.backward()
        parameters = model.module.arch_parameters(
        ) if is_multi_gpu else model.arch_parameters()
        nn.utils.clip_grad_norm_(parameters, args.grad_clip)
        optimizer.step()

        # logging.info("step %d. update weight by SGD. FINISH\n" % step)

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        objs.update(loss.item(), n)
        top1.update(prec1.item(), n)
        top5.update(prec5.item(), n)

        if step % args.report_freq == 0:
            logging.info('train %03d %e %f %f', step, objs.avg, top1.avg,
                         top5.avg)

    return top1.avg, objs.avg
Example #23
0
def train(train_queue, model, criterion, optimizer, epoch, init_lr,
          warmup_epochs, global_step):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()

    model.train()
    for step, (data, target) in enumerate(train_queue):
        n = data.size(0)
        data = data.cuda()
        target = target.cuda()

        # Change lr.
        if epoch < warmup_epochs:
            len_epoch = len(train_queue)
            scale = float(1 + step + epoch * len_epoch) / \
                (warmup_epochs * len_epoch)
            lr = init_lr * scale
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

        # Forward.
        optimizer.zero_grad()
        logits, logits_aux = model(data)
        loss = criterion(logits, target)
        if args.auxiliary:
            loss_aux = criterion(logits_aux, target)
            loss += args.auxiliary_weight * loss_aux

        # Backward and step.
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
        optimizer.step()

        ############# APEX #############
        # Calculate the accuracy.
        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        reduced_loss = utils.reduce_tensor(loss.data, args.world_size)
        prec1 = utils.reduce_tensor(prec1, args.world_size)
        prec5 = utils.reduce_tensor(prec5, args.world_size)

        objs.update(to_python_float(reduced_loss), n)
        top1.update(to_python_float(prec1), n)
        top5.update(to_python_float(prec5), n)
        ################################

        if step % args.report_freq == 0:
            current_lr = list(optimizer.param_groups)[0]['lr']
            logging.info('train %03d %e %f %f lr: %e', step, objs.avg,
                         top1.avg, top5.avg, current_lr)
            writer.add_scalar('train/loss', objs.avg, global_step)
            writer.add_scalar('train/acc_top1', top1.avg, global_step)
            writer.add_scalar('train/acc_top5', top5.avg, global_step)
            writer.add_scalar('train/lr',
                              optimizer.state_dict()['param_groups'][0]['lr'],
                              global_step)
        global_step += 1

    return top1.avg, objs.avg, global_step
Example #24
0
def infer(valid_loader, model, criterion):
    """
targert
    valid loop and record loss ,accuracy 
parameters
    train_loader : training dataloader 
    model        : training model 
    criterion    : loss function 
    return 
    average top 1 accuracy 
    """
    total_loss = utils.AvgrageMeter()
    total_top1 = utils.AvgrageMeter()
    aux_nums = len(model.aux_ind)

    total_loss_aux = [utils.AvgrageMeter() for i in range(aux_nums)]
    total_top1_aux = [utils.AvgrageMeter() for i in range(aux_nums)]

    model.eval()

    for step, (data, target) in enumerate(valid_loader):

        data = data.cuda()
        target = target.cuda()
        with torch.no_grad():
            logits, auxs = model(data)
        loss = F.cross_entropy(logits, target).cuda()
        loss_aux = [F.cross_entropy(i, target).cuda() for i in auxs]

        prec1 = utils.accuracy(logits, target)[0]
        prec1_aux = [utils.accuracy(i, target)[0] for i in auxs]

        n = data.size(0)

        total_loss.update(loss.item(), n)
        total_top1.update(prec1.item(), n)

        [
            total_loss_aux[ind].update(i.item(), n)
            for ind, i in enumerate(loss_aux)
        ]
        [
            total_top1_aux[ind].update(i.item(), n)
            for ind, i in enumerate(prec1_aux)
        ]

        if (step + 1) % args.report_freq == 0:
            [
                logging.info('aux_{}  {:0>3d} {:.6f} {:.3f}'.format(
                    i, step, total_loss_aux[i].avg, total_top1_aux[i].avg))
                for i in range(aux_nums)
            ]
            logging.info('\nvalid  {:0>3d} {:.6f} {:.3f}'.format(
                step, total_loss.avg, total_top1.avg))

    del loss, logits, loss_aux

    return total_top1.avg
Example #25
0
def train(train_queue, valid_queue, model, architect, criterion, optimizer, lr,
          epoch):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()

    for step, (input, target) in enumerate(train_queue):
        model.train()
        n = input.size(0)

        input = input.cuda()
        target = target.cuda(non_blocking=True)

        # get a minibatch from the search queue with replacement
        try:
            input_search, target_search = next(valid_queue_iter)
        except:
            valid_queue_iter = iter(valid_queue)
            input_search, target_search = next(valid_queue_iter)

        input_search = input_search.cuda()
        target_search = target_search.cuda(non_blocking=True)

        # Allow for warm starting of the one-shot model for more reliable architecture updates.
        if epoch >= args.warm_start_epochs:
            architect.step(input,
                           target,
                           input_search,
                           target_search,
                           lr,
                           optimizer,
                           unrolled=args.unrolled)

        optimizer.zero_grad()
        logits = model(input)
        loss = criterion(logits, target)

        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
        optimizer.step()

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        objs.update(loss.data.item(), n)
        top1.update(prec1.data.item(), n)
        top5.update(prec5.data.item(), n)

        if step % args.report_freq == 0:
            logging.info('train %03d %e %f %f', step, objs.avg, top1.avg,
                         top5.avg)
            if args.debug:
                break

    return top1.avg, objs.avg
Example #26
0
def train_controller(reward_loader, model, controller, controller_optimizer):
    global baseline
    total_loss = utils.AvgrageMeter()
    total_reward = utils.AvgrageMeter()
    total_entropy = utils.AvgrageMeter()
    controller.train()
    model.eval()
    for step in range(150):
        data, target = reward_loader.next_batch()
        n = data.size(0)

        data = data.cuda()
        target = target.cuda()

        controller_optimizer.zero_grad()

        dag, log_prob, entropy = controller()
        log_prob = sum(log_prob)
        entropy = sum(entropy)
        with torch.no_grad():
            logits, auxs = model(dag, data)
            reward = utils.accuracy(logits, target)[0]

        if args.entropy_weight is not None:
            reward = reward + args.entropy_weight * entropy

        log_prob = torch.sum(log_prob)
        if baseline is None:
            baseline = reward
        baseline -= (1 - args.bl_dec) * (baseline - reward)

        loss = (log_prob * (reward - baseline)).sum()

        loss.backward()

        controller_optimizer.step()

        total_loss.update(loss.item(), n)
        total_reward.update(reward.item(), n)
        total_entropy.update(entropy.item(), n)
        if (step + 1) % args.report_freq == 0:
            #logging.info('controller %03d %e %f %f', step, loss.item(), reward.item(), baseline.item())
            #logging.info(f'controller {step :0>3d} {total_loss.avg :.6f} {total_reward.avg :.3f} {baseline.item() :.3f}')
            logging.info('controller {:0>3d} {:.6f} {:.3f} {:.3f}'.format(
                step, total_loss.avg, total_reward.avg, baseline.item()))
            # logging.info(f'{[i for i in dag]}')
            logging.info('{}'.format([i for i in dag]))
        with open(os.path.join(args.save, 'dag_all.txt'), 'a') as f:
            #f.write(f'{reward.item() :.3f} {[i for i in dag]} controller\n')
            f.write('{:.3f} {} controller\n'.format(reward.item(),
                                                    [i for i in dag]))
        del loss, reward, entropy, logits
Example #27
0
def train(train_loader, model, optimizer, criterion, start=False):
    """
targert
    training loop and record loss, accuracy 
parameters
    train_loader : training dataloader 
    model        : training model 
    optimizer    : optimizer 
    criterion    : loss function 
    start        : in search stage needed , make all training stable 
return 
    average top 1 accuracy 
    """
    total_loss = utils.AvgrageMeter()
    total_top1 = utils.AvgrageMeter()
    model.train()
    aux_nums = len(model.aux_ind)
    for step, (data, target) in enumerate(train_loader):
        n = data.size(0)

        data = data.cuda()
        target = target.cuda()
        # data, targets_a, targets_b, lam = mixup_data(data, target,args.alpha, True)
        optimizer.zero_grad()
        logits, auxs = model(data)
        loss1 = criterion(logits, target).cuda()
        #loss1 =  mixup_criterion(criterion, logits, targets_a, targets_b, lam)
        #stage loss not in paper , every block will return loss and have different weight
        loss_aux = sum([
            criterion(auxs[i], target).cuda() * 0.1 * (i + 1)
            for i in range(aux_nums)
        ]) / sum((i + 1) * 0.1 for i in range(aux_nums))
        #loss_aux = sum([mixup_criterion(criterion , auxs[i], targets_a, targets_b, lam).cuda()*0.1*(i+1)  for i in range(aux_nums)])/sum((i+1)*0.1 for i in range(aux_nums))

        loss = loss1 + 0.4 * loss_aux
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
        nn.utils.clip_grad_norm(model.parameters(), args.grad_clip)

        optimizer.step()

        prec1 = utils.accuracy(logits, target)[0]
        total_loss.update(loss.item(), n)
        total_top1.update(prec1.item(), n)

        if (step + 1) % args.report_freq == 0:
            logging.info('train {:0>3d} {:.6f} {:.3f}'.format(
                step, total_loss.avg, total_top1.avg))
        del loss, loss1, loss_aux
    return total_top1.avg
Example #28
0
def train(train_queue, valid_queue, model, architect, criterion, optimizer, lr,
          epoch):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()

    for step, (input, target) in enumerate(train_queue):
        model.train()
        n = input.size(0)
        input = input.cuda()
        target = target.cuda(non_blocking=True)

        # get a random minibatch from the search queue with replacement
        input_search, target_search = next(iter(valid_queue))
        input_search = input_search.cuda()
        target_search = target_search.cuda(non_blocking=True)

        if epoch >= 10:
            architect.step(input,
                           target,
                           input_search,
                           target_search,
                           lr,
                           optimizer,
                           unrolled=args.unrolled)
        optimizer.zero_grad()
        architect.optimizer.zero_grad()

        logits = model(input)
        loss = criterion(logits, target)

        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
        optimizer.step()
        optimizer.zero_grad()
        architect.optimizer.zero_grad()

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        objs.update(loss.data, n)
        top1.update(prec1.data, n)
        top5.update(prec5.data, n)

        if step % args.report_freq == 0:
            logging.info('train %03d %e %f %f', step, objs.avg, top1.avg,
                         top5.avg)
        if 'debug' in args.save:
            break

    return top1.avg, objs.avg
Example #29
0
def train(train_loader, model, controller, optimizer, criterion, start=False):
    total_loss = utils.AvgrageMeter()
    total_top1 = utils.AvgrageMeter()
    #controller.eval()
    model.eval()
    controller.GA_training(10, copy.deepcopy(model))
    model.train()
    aux_nums = len(model.aux_ind)
    for step, (data, target) in enumerate(train_loader):
        n = data.size(0)

        data = data.cuda()
        target = target.cuda()

        optimizer.zero_grad()
        # with torch.no_grad():
        #     dag, _, _ = controller()
        #with architecture different GPU memery usage is different when start with maximum memery usage architecutre sequence
        dag = [seq_creater() for i in range(2)]
        if ((step == 0) & (start == True)):
            dag = [[
                0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
            ]] * 2

        logits, auxs = model(dag, data)
        loss1 = criterion(logits, target).cuda()
        loss_aux = sum([
            criterion(auxs[i], target).cuda() * 0.1 * (i + 1)
            for i in range(aux_nums)
        ]) / sum((i + 1) * 0.1 for i in range(aux_nums))
        loss = loss1 + 0.4 * loss_aux
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
        #loss.backward() without amp use this
        optimizer.step()

        prec1 = utils.accuracy(logits, target)[0]
        total_loss.update(loss.item(), n)
        total_top1.update(prec1.item(), n)

        if (step + 1) % args.report_freq == 0:
            logging.info('train {:0>3d} {:.6f} {:.3f}'.format(
                step, total_loss.avg, total_top1.avg))
        with open(os.path.join(args.save, 'dag_all.txt'), 'a') as f:
            f.write('{:.3f} {} share_weight\n'.format(prec1.item(),
                                                      [i for i in dag]))  #
        del loss
    return total_top1.avg
Example #30
0
def train(epoch, train_queue, valid_queue, model, architect, criterion,
          optimizer, lr):
    global is_multi_gpu

    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()

    for step, (input, target) in enumerate(train_queue):

        # logging.info("epoch %d, step %d START" % (epoch, step))
        model.train()
        n = input.size(0)

        input = input.cuda()
        target = target.cuda()

        # get a random minibatch from the search queue with replacement
        input_search, target_search = next(iter(valid_queue))
        input_search = input_search.cuda()
        target_search = target_search.cuda()

        architect.step_v2(input, target, input_search, target_search,
                          lambda_train_regularizer, lambda_valid_regularizer)

        optimizer.zero_grad()
        logits = model(input)
        loss = criterion(logits, target)

        loss.backward()
        parameters = model.module.arch_parameters(
        ) if is_multi_gpu else model.arch_parameters()
        nn.utils.clip_grad_norm_(parameters, args.grad_clip)
        optimizer.step()
        # logging.info("step %d. update weight by SGD. FINISH\n" % step)

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        objs.update(loss.item(), n)
        top1.update(prec1.item(), n)
        top5.update(prec5.item(), n)

        # torch.cuda.empty_cache()

        if step % args.report_freq == 0:
            logging.info('train %03d %e %f %f', step, objs.avg, top1.avg,
                         top5.avg)

    return top1.avg, objs.avg, loss