def predict(): """Predict unseen images""" """Step 0: load data and trained model""" mnist = input_data.read_data_sets("./data/", one_hot=True) checkpoint_dir = sys.argv[1] """Step 1: build the rnn model""" x = tf.placeholder("float", [None, n_steps, n_input]) y = tf.placeholder("float", [None, n_classes]) weights = tf.Variable(tf.random_normal([n_hidden, n_classes]), name='weights') biases = tf.Variable(tf.random_normal([n_classes]), name='biases') pred = rnn_model(x, weights, biases) correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) """Step 2: predict new images with the trained model""" with tf.Session() as sess: sess.run(tf.initialize_all_variables()) """Step 2.0: load the trained model""" checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir + 'checkpoints') print('Loaded the trained model: {}'.format(checkpoint_file)) saver = tf.train.Saver() saver.restore(sess, checkpoint_file) """Step 2.1: predict new data""" test_len = 500 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
def test_train_nn(train_neural_network): mock_session = tf.Session() test_x = np.random.rand(128, 32, 32, 3) test_y = np.random.rand(128, 10) test_k = np.random.rand(1) test_optimizer = tf.train.AdamOptimizer() mock_session.run = MagicMock() train_neural_network(mock_session, test_optimizer, test_k, test_x, test_y) assert mock_session.run.called, 'Session not used' _print_success_message()
name = sys.argv[1] output_filename = sys.argv[2] print("Running experiment: {}.".format(name)) config = util.get_config("experiments.conf")[name] config["log_dir"] = util.mkdirs(os.path.join(config["log_root"], name)) util.print_config(config) model = cm.CorefModel(config) model.load_eval_data() saver = tf.train.Saver() log_dir = config["log_dir"] with tf.Session() as session: checkpoint_path = os.path.join(log_dir, "model.max.ckpt") saver.restore(session, checkpoint_path) with open(output_filename, "w") as f: for example_num, (tensorized_example, example) in enumerate(model.eval_data): feed_dict = {i:t for i,t in zip(model.input_tensors, tensorized_example)} _, _, _, mention_starts, mention_ends, antecedents, antecedent_scores, head_scores = session.run(model.predictions + [model.head_scores], feed_dict=feed_dict) predicted_antecedents = model.get_predicted_antecedents(antecedents, antecedent_scores) example["predicted_clusters"], _ = model.get_predicted_clusters(mention_starts, mention_ends, predicted_antecedents) example["top_spans"] = zip((int(i) for i in mention_starts), (int(i) for i in mention_ends)) example["head_scores"] = head_scores.tolist() f.write(json.dumps(example)) f.write("\n") if example_num % 100 == 0: print("Decoded {} examples.".format(example_num + 1))