Example #1
0
def render():
   model = torch.load_model('mymodel')
   
   # transformations
   testset = datasets.CIFAR10('./data-test', download=True, train=False, transform=transform)
   # testloader
   for _, data in enumerate(testloader, 0):
       inputs, labels = data
       outputs = model(inputs)
Example #2
0
def predict(data, code='000001', folder='../dlmodels'):
    model_file = folder + '/' + 'model_' + code + '.ptm'

    model = load_model(model_file)
    model.eval()
    dataset = torch.FloatTensor(data)
    x = Variable(dataset)
    outputs = model(x)
    outputs = outputs.data.numpy()
    tmpvalues = np.append(data, outputs)
    scaler = make_scaler(code=code)
    tmpvalues = scaler.inverse_transform(
        np.reshape(tmpvalues, (1, tmpvalues.shape[0])))
    tmpvalues = tmpvalues[0]
    outputs = tmpvalues[feature * timestep:]
    return format_outputs(outputs)
Example #3
0
 def load(self, model_name):
     self.modelF.load_state_dict(load_model(os.path.join('model', model_name)))
Example #4
0
 def load(self, name):
     self.model = load_model(name)
Example #5
0
def load_model():
    return torch.load_model(file2save)
 def load(self, name):
     self.model = load_model(name)
     self.target_model = load_model(name)