Example #1
0
def clotho_collate_fn_test(batch, nb_t_steps, input_pad_at):
    if type(nb_t_steps) == str:
        truncate_fn = max if nb_t_steps.lower() == 'max' else min
        in_t_steps = truncate_fn([i[0].shape[0] for i in batch])
    else:
        in_t_steps = nb_t_steps

    in_dim = batch[0][0].shape[-1]

    input_tensor = []

    for in_b, filename in batch:
        if in_t_steps >= in_b.shape[0]:
            padding = pt_zeros(in_t_steps - in_b.shape[0], in_dim).float()
            data = [from_numpy(in_b).float()]
            if input_pad_at.lower() == 'start':
                data.insert(0, padding)
            else:
                data.append(padding)
            tmp_in: Tensor = pt_cat(data)
        else:
            tmp_in: Tensor = from_numpy(in_b[:in_t_steps, :]).float()
        input_tensor.append(tmp_in.unsqueeze_(0))

    input_tensor = pt_cat(input_tensor)

    filename = [i[1] for i in batch]

    return input_tensor, filename
Example #2
0
def collate_fn(batch, input_pad_at='start'):

    in_t_steps = max([i[0].shape[0] for i in batch])

    in_dim = batch[0][0].shape[-1]

    input_tensor, output_tensor = [], []

    for in_b, out_b in batch:
        if in_t_steps >= in_b.shape[0]:
            padding = pt_zeros(in_t_steps - in_b.shape[0], in_dim).float()
            data = [from_numpy(in_b).float()]
            if input_pad_at.lower() == 'start':
                data.insert(0, padding)
            else:
                data.append(padding)
            tmp_in: Tensor = pt_cat(data)
        else:
            tmp_in: Tensor = from_numpy(in_b[:in_t_steps, :]).float()
        input_tensor.append(tmp_in.unsqueeze_(0))
        tmp_out: Tensor = torch.Tensor(out_b)
        output_tensor.append(tmp_out.unsqueeze_(0))

    input_tensor = pt_cat(input_tensor)
    output_tensor = pt_cat(output_tensor)

    return input_tensor, output_tensor
Example #3
0
def clotho_collate_fn_eval(batch: MutableSequence[ndarray],
                           nb_t_steps: Union[AnyStr, Tuple[int, int]],
                           input_pad_at: str,
                           output_pad_at: str,
                           split: str,
                           augment:bool) \
        -> Tuple[Tensor, Tensor, Tensor, list]:
    """Pads data.

    :param batch: Batch data.
    :type batch: list[numpy.ndarray]
    :param nb_t_steps: Number of time steps to\
                       pad/truncate to. Cab use\
                       'max', 'min', or exact number\
                       e.g. (1024, 10).
    :type nb_t_steps: str|(int, int)
    :param input_pad_at: Pad input at the start or\
                         at the end?
    :type input_pad_at: str
    :param output_pad_at: Pad output at the start or\
                          at the end?
    :type output_pad_at: str
    :return: Padded data.
    :rtype: torch.Tensor, torch.Tensor
    """
    if type(nb_t_steps) == str:
        truncate_fn = max if nb_t_steps.lower() == 'max' else min
        in_t_steps = truncate_fn([i[0].shape[0] for i in batch])
        out_t_steps = truncate_fn([i[1].shape[0] for i in batch])
    else:
        in_t_steps, out_t_steps = nb_t_steps

    in_dim = batch[0][0].shape[-1]
    eos_token = batch[0][1][-1]
    batch = sorted(batch, key=lambda x: x[-1], reverse=True)
    PAD = 4367
    input_tensor, output_tensor = [], []

    for in_b, out_b, ref, filename, out_len in batch:
        if in_t_steps >= in_b.shape[0]:
            padding = pt_zeros(in_t_steps - in_b.shape[0], in_dim).float()
            data = [from_numpy(in_b).float()]
            if input_pad_at.lower() == 'start':
                data.insert(0, padding)
            else:
                data.append(padding)
            tmp_in: Tensor = pt_cat(data)
        else:
            tmp_in: Tensor = from_numpy(in_b[:in_t_steps, :]).float()
        input_tensor.append(tmp_in.unsqueeze_(0))

        if out_t_steps >= out_b.shape[0]:
            padding = pt_ones(out_t_steps - len(out_b)).mul(PAD).long()
            data = [from_numpy(out_b).long()]
            if output_pad_at.lower() == 'start':
                data.insert(0, padding)
            else:
                data.append(padding)

            tmp_out: Tensor = pt_cat(data)
        else:
            tmp_out: Tensor = from_numpy(out_b[:out_t_steps]).long()
        output_tensor.append(tmp_out.unsqueeze_(0))

    input_tensor = pt_cat(input_tensor)

    if augment:
        input_tensor = spec_augment(input_tensor)

    output_tensor = pt_cat(output_tensor)
    all_ref = [i[2] for i in batch]
    filename = [i[3] for i in batch]
    *_, target_len = zip(*batch)
    target_len = torch.LongTensor(target_len)

    return input_tensor, output_tensor, target_len, all_ref
Example #4
0
def clotho_collate_fn(batch: MutableSequence[ndarray],
                      nb_t_steps: Union[AnyStr, Tuple[int, int]],
                      input_pad_at: str,
                      output_pad_at: str) \
        -> Tuple[Tensor, Tensor]:
    """Pads data.

    :param batch: Batch data.
    :type batch: list[numpy.ndarray]
    :param nb_t_steps: Number of time steps to\
                       pad/truncate to. Cab use\
                       'max', 'min', or exact number\
                       e.g. (1024, 10).
    :type nb_t_steps: str|(int, int)
    :param input_pad_at: Pad input at the start or\
                         at the end?
    :type input_pad_at: str
    :param output_pad_at: Pad output at the start or\
                          at the end?
    :type output_pad_at: str
    :return: Padded data.
    :rtype: torch.Tensor, torch.Tensor
    """
    if type(nb_t_steps) == str:
        truncate_fn = max if nb_t_steps.lower() == 'max' else min
        in_t_steps = truncate_fn([i[0].shape[0] for i in batch])
        out_t_steps = truncate_fn([i[1].shape[0] for i in batch])
    else:
        in_t_steps, out_t_steps = nb_t_steps

    in_dim = batch[0][0].shape[-1]
    eos_token = batch[0][1][-1]
    PAD = 4367

    input_tensor, output_tensor = [], []

    for in_b, out_b in batch:
        if in_t_steps >= in_b.shape[0]:
            padding = pt_zeros(in_t_steps - in_b.shape[0], in_dim).float()
            data = [from_numpy(in_b).float()]
            if input_pad_at.lower() == 'start':
                data.insert(0, padding)
            else:
                data.append(padding)
            tmp_in: Tensor = pt_cat(data)
        else:
            tmp_in: Tensor = from_numpy(in_b[:in_t_steps, :]).float()
        input_tensor.append(tmp_in.unsqueeze_(0))

        if out_t_steps >= out_b.shape[0]:
            padding = pt_ones(out_t_steps - len(out_b)).mul(PAD).long()
            data = [from_numpy(out_b).long()]
            if output_pad_at.lower() == 'start':
                data.insert(0, padding)
            else:
                data.append(padding)

            tmp_out: Tensor = pt_cat(data)
        else:
            tmp_out: Tensor = from_numpy(out_b[:out_t_steps]).long()
        output_tensor.append(tmp_out.unsqueeze_(0))

    input_tensor = pt_cat(input_tensor)
    output_tensor = pt_cat(output_tensor)

    return input_tensor, output_tensor
Example #5
0
def clotho_train_collate_fn(batch: MutableSequence[ndarray],
                      nb_t_steps: Union[AnyStr, Tuple[int, int]],
                      input_pad_at: str,
                      output_pad_at: str) \
        -> Tuple[Tensor, Tensor, Tensor, Tensor, list]:
    """Pads data.

    :param batch: Batch data.
    :type batch: list[numpy.ndarray]
    :param nb_t_steps: Number of time steps to\
                       pad/truncate to. Cab use\
                       'max', 'min', or exact number\
                       e.g. (1024, 10).
    :type nb_t_steps: str|(int, int)
    :param input_pad_at: Pad input at the start or\
                         at the end?
    :type input_pad_at: str
    :param output_pad_at: Pad output at the start or\
                          at the end?
    :type output_pad_at: str
    :return: Padded data.
    :rtype: torch.Tensor, torch.Tensor
    """
    def make_seq_even(sequences, audio_lengths):
        even_seqs = []
        even_len = []
        for i, s in enumerate(sequences):
            if len(s) % 2 != 0:
                even_seqs.append(s[:-1])
                even_len.append(audio_lengths[i] - 1)
            else:
                even_seqs.append(s)
                even_len.append(audio_lengths[i])

        return even_seqs, even_len

    if type(nb_t_steps) == str:
        truncate_fn = max if nb_t_steps.lower() == 'max' else min
        in_t_steps = truncate_fn([i[0].shape[0] for i in batch])
        out_t_steps = truncate_fn([i[1].shape[0] for i in batch])
    else:
        in_t_steps, out_t_steps = nb_t_steps

    in_dim = batch[0][0].shape[-1]
    eos_token = batch[0][1][-1]

    input_tensor, output_tensor = [], []
    audio_lengths, text_lengths = [], []
    file_ids_list = []

    for in_b, out_b, fileid_b in batch:

        audio_lengths.append(in_b.shape[0])
        # print("toto", out_b.shape)
        text_lengths.append(out_b.shape[0])

        file_ids_list.extend(fileid_b)

        if in_t_steps >= in_b.shape[0]:
            padding = pt_zeros(in_t_steps - in_b.shape[0], in_dim).float()
            data = [from_numpy(in_b).float()]
            if input_pad_at.lower() == 'start':
                data.insert(0, padding)
            else:
                data.append(padding)
            tmp_in: Tensor = pt_cat(data)
        else:
            tmp_in: Tensor = from_numpy(in_b[:in_t_steps, :]).float()
        # input_tensor.append(tmp_in.unsqueeze_(0))
        input_tensor.append(tmp_in)

        if out_t_steps >= out_b.shape[0]:
            padding = pt_ones(out_t_steps - len(out_b)).mul(eos_token).long()
            data = [from_numpy(out_b).long()]
            if output_pad_at.lower() == 'start':
                data.insert(0, padding)
            else:
                data.append(padding)

            tmp_out: Tensor = pt_cat(data)
        else:
            tmp_out: Tensor = from_numpy(out_b[:out_t_steps]).long()
        # output_tensor.append(tmp_out.unsqueeze_(0))
        output_tensor.append(tmp_out)

    # we sort by increasing lengths
    # print("audio_lengths", audio_lengths)
    audio_sorted_indices = sorted(range(len(audio_lengths)),
                                  key=lambda k: audio_lengths[k])
    audio_batch_sorted = [input_tensor[i] for i in audio_sorted_indices]
    audio_lengths_sorted = [audio_lengths[i] for i in audio_sorted_indices]
    #     print("before, audio_sorted_indices", audio_sorted_indices)
    # print("audio_lengths_sorted", audio_lengths_sorted)

    # get text with the audio_sorted_indices indices
    text_batch_sorted = [
        output_tensor[i].unsqueeze_(0) for i in audio_sorted_indices
    ]
    text_lengths = [text_lengths[i] for i in audio_sorted_indices]
    # print("text_lengths", text_lengths)
    #     print("before, text_lengths", text_lengths)

    # make all audio tensors to even length
    even_audio_batch_sorted, even_audio_lengths_sorted = make_seq_even(
        audio_batch_sorted, audio_lengths_sorted)

    # reverse lists: largest sequence first (needed for packed sequences)
    # audio_sorted_indices = audio_sorted_indices[::-1]
    even_audio_lengths_sorted = even_audio_lengths_sorted[::-1]
    even_audio_batch_sorted = even_audio_batch_sorted[::-1]

    text_batch_sorted = text_batch_sorted[::-1]
    text_lengths = text_lengths[::-1]

    text_lengths = LongTensor(text_lengths)
    # print("text_lengths tensor", text_lengths)
    text_batch_sorted = pt_cat(text_batch_sorted)
    even_audio_lengths_sorted = LongTensor(even_audio_lengths_sorted)

    # we pad the sequences and get a tensor
    input_tensor = rnn_utils.pad_sequence(
        even_audio_batch_sorted)  # size: T, B, F=40

    # let's sort the file ids list with the sorted indices:
    # print("????", len(audio_sorted_indices))
    # print("????", len(file_ids_list), file_ids_list)

    file_ids_list_sorted = [file_ids_list[ind] for ind in audio_sorted_indices]
    file_ids_list_sorted = file_ids_list_sorted[::-1]

    # print("????", len(file_ids_list_sorted), file_ids_list_sorted)

    # print('input_tensor', input_tensor.size())
    # print("text_batch_sorted", text_batch_sorted)
    # print("even_audio_lengths_sorted tensor", even_audio_lengths_sorted)
    # print("text_lengths", text_lengths)

    #     print("x_pad", x_pad.size())
    #     for i in range(len(audio_batch)):
    #         print(i, audio_lengths_sorted[i], audio_batch_sorted[i].size(), x_pad[:,i,:].size(), text_lengths[i], padded_text[i].size())

    return input_tensor, text_batch_sorted, even_audio_lengths_sorted, text_lengths, file_ids_list_sorted