Example #1
0
def create_transform(config):
    if config["model"]["name"] == "pointnet":
        transform = T.ToTensor()
    elif config["model"]["name"] == "pointnet2":
        transform = T.ToTensor()
    elif config["model"]["name"] == "dgcnn":
        transform = T.ToTensor()
    return transform
Example #2
0
def test_compose():
    size = torch.Size([3, 1024])
    x = np.random.rand(2048, 3)
    t = T.Compose([T.Shuffle(), T.RandomPointSample(1024), T.ToTensor()])
    x = t(x)
    assert x.is_contiguous()
    assert x.shape == size
Example #3
0
def main(args):
    # ToTensor transform converts numpy point clouds into tensors
    transform = transforms.ToTensor()
    dataloaders = {
        "train":
        data.DataLoader(
            dsets.ModelNet40(
                args.root,
                train=True,
                transform=transform,
                download=True,  # download dataset if needed
            ),
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            pin_memory=True,
            shuffle=True,
        ),
        "test":
        data.DataLoader(
            dsets.ModelNet40(
                args.root,
                train=False,  # now we use the test set
                transform=transform,
                download=False,
            ),
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            pin_memory=True,
            shuffle=False,
        ),
    }
    # Create PointNet model and its optimizer
    model = models.PointNet(args.in_channels, args.num_classes).to(args.device)
    optimizer = optim.Adam(model.parameters(), args.lr)
    criteria = nn.CrossEntropyLoss()

    # Showing random samples
    points, labels = next(iter(dataloaders["test"]))
    points = points.transpose(2, 1).numpy()
    visualize(points, labels)

    # Here comes the training loop
    for epoch in range(args.epochs):
        train_epoch(args, epoch, model, dataloaders["train"], optimizer,
                    criteria)

    predict = evaluate(args, model, dataloaders["test"])
    visualize(points, labels, predict)
    print("Done.")
Example #4
0
def main(args):
    # ToTensor transform converts numpy point clouds into tensors
    transform = transforms.ToTensor()
    dataloaders = {
        "train":
        data.DataLoader(
            dsets.ShapeNetPart(
                args.root,
                split="train",
                transform=transform,
                download=True,  # download dataset if needed
            ),
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            pin_memory=True,
            shuffle=True,
        ),
        "test":
        data.DataLoader(
            dsets.ShapeNetPart(
                args.root,
                split="test",  # now we use the test set
                transform=transform,
                download=False,
            ),
            batch_size=args.batch_size,
            num_workers=args.num_workers,
            pin_memory=True,
            shuffle=False,
        ),
    }
    # Create FoldingNet model
    model = FoldingNet(args.in_channels).to(args.device)
    optimizer = optim.Adam(model.parameters(), args.lr)
    criteria = ChamferLoss()

    points, _ = next(iter(dataloaders["test"]))
    points = points.transpose(2, 1).numpy()

    # Here comes the training loop
    for epoch in range(args.epochs):
        train_epoch(args, epoch, model, dataloaders["train"], optimizer,
                    criteria)
    predict = evaluate(args, model, dataloaders["test"])
    visualize(points, predict[0])
Example #5
0
def test_to_tensor():
    size = torch.Size([3, 2048])
    x = np.random.rand(2048, 3)
    x = T.ToTensor()(x)
    assert x.is_contiguous()
    assert x.shape == size