def test_cg_conv(): edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = edge_index.max().item() + 1 x = torch.randn((num_nodes, 16)) pseudo = torch.rand((edge_index.size(1), 3)) conv = CGConv(16, 3) assert conv.__repr__() == 'CGConv(16, 16, dim=3)' assert conv(x, edge_index, pseudo).size() == (num_nodes, 16)
def __init__(self, in_ch_sl, in_ch_ad, nconv): super(comp2Net, self).__init__() self.conv1_sl = CGConv(in_ch_sl) self.conv2_sl = CGConv(in_ch_sl) self.conv1_ad = CGConv(in_ch_ad) self.conv2_ad = CGConv(in_ch_ad) self.lin_sl = torch.nn.Linear(in_ch_sl, in_ch_ad) self.lin = torch.nn.Linear(in_ch_ad, 1) self.nconv = nconv
def __init__(self, num_input, num_edge_features, num_output): super(EncoderV2, self).__init__() self.conv1 = CGConv(num_input, num_edge_features) self.conv2 = CGConv(num_input, num_edge_features) self.conv3 = CGConv(num_input, num_edge_features) self.lin1 = torch.nn.Linear(27, 126) self.lin2 = torch.nn.Linear(126, 64) self.lin3 = torch.nn.Linear(64, num_output)
def test_cg_conv(): edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = edge_index.max().item() + 1 x = torch.randn((num_nodes, 16)) pseudo = torch.rand((edge_index.size(1), 3)) conv = CGConv(16, 3) assert conv.__repr__() == 'CGConv(16, 16, dim=3)' out = conv(x, edge_index, pseudo) assert out.size() == (num_nodes, 16) jit = torch.jit.script(conv.jittable()) assert jit(x, edge_index, pseudo).tolist() == out.tolist()
def makeConv(self, nin, nout, conv_args): # FeaStConv if(conv_args['name'] == 'FeaSt'): return FeaStConv(nin, nout, conv_args["num_heads"]) # SplineConv if(conv_args['name'] == 'Spline'): return SplineConv(nin, nout, self.edge_dim, conv_args["kernel_size"], is_open_spline=conv_args["open_spline"], degree=conv_args["degree"] ) # GMMConv if(conv_args['name'] == "GMM"): return GMMConv(nin, nout, self.edge_dim, conv_args["kernel_size"] ) # NNConv if(conv_args["name"] == "NN"): h = nn.Sequential( nn.Linear(self.edge_dim, nin*nout), nn.ReLU() #nn.Linear(int(nin*nout/2), nin*nout) ) return NNConv(nin, nout, h) # PPFConv if(conv_args["name"] == "PPF"): cin = nin+4 hl = nn.Sequential( nn.Linear(cin, conv_args['nhidden']), nn.ReLU() ) hg = nn.Linear(conv_args['nhidden'], nout) #hl = nn.Sequential( #nn.Linear(cin, int(conv_args['nhidden']/2)), #nn.ReLU(), #nn.Linear(int(conv_args['nhidden']/2), conv_args['nhidden']) #) #hg = nn.Sequential( #nn.Linear(conv_args['nhidden'], nout), #nn.ReLU(), #nn.Linear(nout, nout) #) return PPFConv(hl, hg) # CGConv if(conv_args["name"] == "CG"): return CGConv(nin, self.edge_dim)
def __init__(self, node_atom:int, n_h1:int, dim_out): super(Net, self).__init__() #node 特征1维 原子类型 edge特征 1 维 bond 键数 #graph卷积不提升维数 self.conv1 = CGConv(1, dim=1) #self.conv1 = ChebConv(1, 1, K=5) self.conv2 = GCNConv(1, 3, add_self_loops =False) #self.conv2 = GCNConv(dim_output1, dim_out) #之前输出的是 50 node * 1维 #普通线性层 self.layer3 = nn.Sequential(nn.Linear(3*node_atom, n_h1), nn.BatchNorm1d(n_h1)) self.layer4 = nn.Sequential(nn.Linear(n_h1, dim_out))
def test_cg_conv_with_edge_features(): x1 = torch.randn(4, 8) x2 = torch.randn(2, 16) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]) row, col = edge_index value = torch.rand(row.size(0), 3) adj = SparseTensor(row=row, col=col, value=value, sparse_sizes=(4, 4)) conv = CGConv(8, dim=3) assert conv.__repr__() == 'CGConv(8, dim=3)' out = conv(x1, edge_index, value) assert out.size() == (4, 8) assert conv(x1, edge_index, value, size=(4, 4)).tolist() == out.tolist() assert conv(x1, adj.t()).tolist() == out.tolist() t = '(Tensor, Tensor, OptTensor, Size) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit(x1, edge_index, value).tolist() == out.tolist() assert jit(x1, edge_index, value, size=(4, 4)).tolist() == out.tolist() t = '(Tensor, SparseTensor, OptTensor, Size) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit(x1, adj.t()).tolist() == out.tolist() adj = adj.sparse_resize((4, 2)) conv = CGConv((8, 16), dim=3) assert conv.__repr__() == 'CGConv((8, 16), dim=3)' out = conv((x1, x2), edge_index, value) assert out.size() == (2, 16) assert conv((x1, x2), edge_index, value, (4, 2)).tolist() == out.tolist() assert conv((x1, x2), adj.t()).tolist() == out.tolist() t = '(PairTensor, Tensor, OptTensor, Size) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit((x1, x2), edge_index, value).tolist() == out.tolist() assert jit((x1, x2), edge_index, value, (4, 2)).tolist() == out.tolist() t = '(PairTensor, SparseTensor, OptTensor, Size) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit((x1, x2), adj.t()).tolist() == out.tolist()
def __init__(self, n_features: int, n_edge:int, conv_dim:int=64): super(CGNet_squashed, self).__init__() self.fc1 = torch.nn.Linear(9, conv_dim) # OBS: root_weight needs to be false. We already account for by including a self-loop # to the root vertex in edge_index self.conv_l1 = CGConv(conv_dim, n_edge, aggr="mean", flow="target_to_source") self.fc2 = torch.nn.Linear(conv_dim, conv_dim) self.fc3 = torch.nn.Linear(conv_dim, 64) self.fc4 = torch.nn.Linear(64, 2)
def __init__(self, n_features: int, n_edge:int, conv_dim:int=64, depth:int=2): super(CGNet_flatten, self).__init__() self.depth = depth self.fc1 = torch.nn.Linear(9, conv_dim) # OBS: root_weight needs to be false. We already account for by including a self-loop # to the root vertex in edge_index self.conv_l1 = CGConv(conv_dim, 3, aggr="mean", flow="target_to_source") self.fc_shared = torch.nn.Linear(conv_dim, conv_dim) self.fc2_class = torch.nn.Linear(conv_dim, 64) self.fc3_class = torch.nn.Linear(64, 2) self.fc2_delta = torch.nn.Linear(conv_dim, 64) self.fc3_delta = torch.nn.Linear(64, 2)
def test_cg_conv(): x1 = torch.randn(4, 8) x2 = torch.randn(2, 16) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]) row, col = edge_index adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4)) conv = CGConv(8) assert conv.__repr__() == 'CGConv(8, dim=0)' out = conv(x1, edge_index) assert out.size() == (4, 8) assert conv(x1, adj.t()).tolist() == out.tolist() t = '(Tensor, Tensor, OptTensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit(x1, edge_index).tolist() == out.tolist() t = '(Tensor, SparseTensor, OptTensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit(x1, adj.t()).tolist() == out.tolist() adj = adj.sparse_resize((4, 2)) conv = CGConv((8, 16)) assert conv.__repr__() == 'CGConv((8, 16), dim=0)' out = conv((x1, x2), edge_index) assert out.size() == (2, 16) assert conv((x1, x2), adj.t()).tolist() == out.tolist() t = '(PairTensor, Tensor, OptTensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit((x1, x2), edge_index).tolist() == out.tolist() t = '(PairTensor, SparseTensor, OptTensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit((x1, x2), adj.t()).tolist() == out.tolist() # Test batch_norm true: adj = SparseTensor(row=row, col=col, sparse_sizes=(4, 4)) conv = CGConv(8, batch_norm=True) assert conv.__repr__() == 'CGConv(8, dim=0)' out = conv(x1, edge_index) assert out.size() == (4, 8) assert conv(x1, adj.t()).tolist() == out.tolist() t = '(Tensor, Tensor, OptTensor) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert jit(x1, edge_index).tolist() == out.tolist()
def __init__(self, in_ch, nconv): super(simpleNet, self).__init__() self.conv1 = CGConv(in_ch) self.conv2 = CGConv(in_ch) self.lin = torch.nn.Linear(in_ch, 1) self.nconv = nconv
def __init__(self, in_channels, dim, out_size): super(SimpleGNN, self).__init__() self.conv1 = CGConv(in_channels, dim, aggr='add', bias=True) self.conv2 = CGConv(in_channels, dim, aggr='add', bias=True) self.conv3 = CGConv(in_channels, dim, aggr='add', bias=True) self.lin = nn.Linear(in_channels, out_size)