def testSpeechCommandsSum(self): dataset_all = speechcommands.SPEECHCOMMANDS(self.root_dir) dataset_train = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training") dataset_valid = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation") dataset_test = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing") assert len(dataset_train) + len(dataset_valid) + len( dataset_test) == len(dataset_all)
def testSpeechCommandsNone(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset=None) num_samples = 0 for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(dataset): self.assertEqual(data, self.samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == self.samples[i][1] assert label == self.samples[i][2] assert speaker_id == self.samples[i][3] assert utterance_number == self.samples[i][4] num_samples += 1 assert num_samples == len(self.samples)
def testSpeechCommandsSubsetTest(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing") self._testSpeechCommands(dataset, self.test_samples)
def testSpeechCommandsSubsetValid(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation") self._testSpeechCommands(dataset, self.valid_samples)
def testSpeechCommands_path(self): dataset = speechcommands.SPEECHCOMMANDS(Path(self.root_dir)) self._testSpeechCommands(dataset, self.samples)