def _make_datapipe( self, resource_dps: List[IterDataPipe], *, config: DatasetConfig, decoder: Optional[Callable[[io.IOBase], torch.Tensor]], ) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] splits_dp, joint_categories_dp, images_dp = Demultiplexer( archive_dp, 3, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) splits_dp = Filter(splits_dp, path_comparator("name", f"{config.split}{config.fold}.txt")) splits_dp = LineReader(splits_dp, decode=True, return_path=False) splits_dp = Shuffler(splits_dp, buffer_size=INFINITE_BUFFER_SIZE) splits_dp = hint_sharding(splits_dp) joint_categories_dp = CSVParser(joint_categories_dp, delimiter=" ") dp = IterKeyZipper( splits_dp, joint_categories_dp, key_fn=getitem(), ref_key_fn=getitem(0), buffer_size=INFINITE_BUFFER_SIZE, ) dp = IterKeyZipper( dp, images_dp, key_fn=getitem(0), ref_key_fn=self._image_key_fn, buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper(dp, functools.partial(self._collate_and_decode_sample, decoder=decoder))
def _make_datapipe( self, resource_dps: List[IterDataPipe], *, config: DatasetConfig, ) -> IterDataPipe[Dict[str, Any]]: archive_dp, extra_split_dp = resource_dps archive_dp = resource_dps[0] split_dp, images_dp, anns_dp = Demultiplexer( archive_dp, 3, self._classify_archive, buffer_size=INFINITE_BUFFER_SIZE, drop_none=True, ) if config.split == "train_noval": split_dp = extra_split_dp split_dp = Filter(split_dp, path_comparator("name", f"{config.split}.txt")) split_dp = LineReader(split_dp, decode=True) split_dp = hint_sharding(split_dp) split_dp = hint_shuffling(split_dp) dp = split_dp for level, data_dp in enumerate((images_dp, anns_dp)): dp = IterKeyZipper( dp, data_dp, key_fn=getitem(*[0] * level, 1), ref_key_fn=path_accessor("stem"), buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper(dp, self._prepare_sample)
def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] split_dp, images_dp, anns_dp = Demultiplexer( archive_dp, 3, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE, ) split_dp = Filter(split_dp, functools.partial(self._is_in_folder, name=self._split_folder)) split_dp = Filter(split_dp, path_comparator("name", f"{self._split}.txt")) split_dp = LineReader(split_dp, decode=True) split_dp = hint_shuffling(split_dp) split_dp = hint_sharding(split_dp) dp = split_dp for level, data_dp in enumerate((images_dp, anns_dp)): dp = IterKeyZipper( dp, data_dp, key_fn=getitem(*[0] * level, 1), ref_key_fn=path_accessor("stem"), buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper(dp, self._prepare_sample)
def _datapipe( self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: dp = Decompressor(resource_dps[0]) dp = LineReader(dp, decode=True, return_path=False) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample)
def _make_datapipe(self, resource_dps: List[IterDataPipe], *, config: DatasetConfig) -> IterDataPipe[Dict[str, Any]]: if config.split in {"train", "test"}: dp = resource_dps[0] # the train archive is a tar of tars if config.split == "train": dp = TarArchiveReader(dp) dp = hint_sharding(dp) dp = hint_shuffling(dp) dp = Mapper( dp, self._prepare_train_data if config.split == "train" else self._prepare_test_data) else: # config.split == "val": images_dp, devkit_dp = resource_dps meta_dp, label_dp = Demultiplexer(devkit_dp, 2, self._classifiy_devkit, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE) meta_dp = Mapper(meta_dp, self._extract_categories_and_wnids) _, wnids = zip(*next(iter(meta_dp))) label_dp = LineReader(label_dp, decode=True, return_path=False) label_dp = Mapper( label_dp, functools.partial(self._imagenet_label_to_wnid, wnids=wnids)) label_dp: IterDataPipe[Tuple[int, str]] = Enumerator(label_dp, 1) label_dp = hint_sharding(label_dp) label_dp = hint_shuffling(label_dp) dp = IterKeyZipper( label_dp, images_dp, key_fn=getitem(0), ref_key_fn=self._val_test_image_key, buffer_size=INFINITE_BUFFER_SIZE, ) dp = Mapper(dp, self._prepare_val_data) return Mapper(dp, self._prepare_sample)
def _make_datapipe( self, resource_dps: List[IterDataPipe], *, config: DatasetConfig, decoder: Optional[Callable[[io.IOBase], torch.Tensor]], ) -> IterDataPipe[Dict[str, Any]]: images_dp, devkit_dp = resource_dps if config.split == "train": # the train archive is a tar of tars dp = TarArchiveReader(images_dp) dp = hint_sharding(dp) dp = hint_shuffling(dp) dp = Mapper(dp, self._collate_train_data) elif config.split == "val": devkit_dp = Filter( devkit_dp, path_comparator("name", "ILSVRC2012_validation_ground_truth.txt")) devkit_dp = LineReader(devkit_dp, return_path=False) devkit_dp = Mapper(devkit_dp, int) devkit_dp = Enumerator(devkit_dp, 1) devkit_dp = hint_sharding(devkit_dp) devkit_dp = hint_shuffling(devkit_dp) dp = IterKeyZipper( devkit_dp, images_dp, key_fn=getitem(0), ref_key_fn=self._val_test_image_key, buffer_size=INFINITE_BUFFER_SIZE, ) dp = Mapper(dp, self._collate_val_data) else: # config.split == "test" dp = hint_sharding(images_dp) dp = hint_shuffling(dp) dp = Mapper(dp, self._collate_test_data) return Mapper( dp, functools.partial(self._collate_and_decode_sample, decoder=decoder))
def _make_datapipe( self, resource_dps: List[IterDataPipe], *, config: DatasetConfig, ) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] split_dp, images_dp, anns_dp = Demultiplexer( archive_dp, 3, functools.partial(self._classify_archive, config=config), drop_none=True, buffer_size=INFINITE_BUFFER_SIZE, ) split_dp = Filter( split_dp, functools.partial(self._is_in_folder, name=self._SPLIT_FOLDER[config.task])) split_dp = Filter(split_dp, path_comparator("name", f"{config.split}.txt")) split_dp = LineReader(split_dp, decode=True) split_dp = hint_sharding(split_dp) split_dp = hint_shuffling(split_dp) dp = split_dp for level, data_dp in enumerate((images_dp, anns_dp)): dp = IterKeyZipper( dp, data_dp, key_fn=getitem(*[0] * level, 1), ref_key_fn=path_accessor("stem"), buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper( dp, functools.partial( self._prepare_sample, prepare_ann_fn=self._prepare_detection_ann if config.task == "detection" else self._prepare_segmentation_ann, ), )
def _make_datapipe( self, resource_dps: List[IterDataPipe], *, config: DatasetConfig, decoder: Optional[Callable[[io.IOBase], torch.Tensor]], ) -> IterDataPipe[Dict[str, Any]]: archive_dp, extra_split_dp = resource_dps archive_dp = resource_dps[0] split_dp, images_dp, anns_dp = Demultiplexer( archive_dp, 3, self._classify_archive, buffer_size=INFINITE_BUFFER_SIZE, drop_none=True, ) if config.split == "train_noval": split_dp = extra_split_dp split_dp = Filter(split_dp, path_comparator("stem", config.split)) split_dp = LineReader(split_dp, decode=True) split_dp = hint_sharding(split_dp) split_dp = hint_shuffling(split_dp) dp = split_dp for level, data_dp in enumerate((images_dp, anns_dp)): dp = IterKeyZipper( dp, data_dp, key_fn=getitem(*[0] * level, 1), ref_key_fn=path_accessor("stem"), buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper( dp, functools.partial(self._collate_and_decode_sample, config=config, decoder=decoder))
def _generate_categories(self) -> Tuple[str, ...]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, path_comparator("name", "category_names.m")) dp = LineReader(dp) dp = Mapper(dp, bytes.decode, input_col=1) lines = tuple(zip(*iter(dp)))[1] pattern = re.compile(r"\s*'(?P<category>\w+)';\s*%(?P<label>\d+)") categories_and_labels = cast( List[Tuple[str, ...]], [ pattern.match(line).groups() # type: ignore[union-attr] # the first and last line contain no information for line in lines[1:-1] ], ) categories_and_labels.sort(key=lambda category_and_label: int(category_and_label[1])) categories, _ = zip(*categories_and_labels) return categories
def _datapipe( self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: archive_dp = resource_dps[0] images_dp, split_dp = Demultiplexer(archive_dp, 2, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE) split_dp = Filter(split_dp, path_comparator("name", f"{self._split}.txt")) split_dp = LineReader(split_dp, decode=True, return_path=False) split_dp = hint_sharding(split_dp) split_dp = hint_shuffling(split_dp) dp = IterKeyZipper( split_dp, images_dp, key_fn=getitem(), ref_key_fn=self._image_key, buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper(dp, self._prepare_sample)
def _generate_categories(self) -> List[str]: resources = self._resources() dp = resources[0].load(self._root) dp = Filter(dp, path_comparator("name", "classes.txt")) dp = LineReader(dp, decode=True, return_path=False) return list(dp)
def _datapipe( self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: prepare_ann_fn: Callable if self._year == "2011": archive_dp, segmentations_dp = resource_dps images_dp, split_dp, image_files_dp, bounding_boxes_dp = Demultiplexer( archive_dp, 4, self._2011_classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE) image_files_dp = CSVParser(image_files_dp, dialect="cub200") image_files_map = dict( (image_id, rel_posix_path.rsplit("/", maxsplit=1)[1]) for image_id, rel_posix_path in image_files_dp) split_dp = CSVParser(split_dp, dialect="cub200") split_dp = Filter(split_dp, self._2011_filter_split) split_dp = Mapper(split_dp, getitem(0)) split_dp = Mapper(split_dp, image_files_map.get) bounding_boxes_dp = CSVParser(bounding_boxes_dp, dialect="cub200") bounding_boxes_dp = Mapper(bounding_boxes_dp, image_files_map.get, input_col=0) anns_dp = IterKeyZipper( bounding_boxes_dp, segmentations_dp, key_fn=getitem(0), ref_key_fn=self._2011_segmentation_key, keep_key=True, buffer_size=INFINITE_BUFFER_SIZE, ) prepare_ann_fn = self._2011_prepare_ann else: # self._year == "2010" split_dp, images_dp, anns_dp = resource_dps split_dp = Filter(split_dp, path_comparator("name", f"{self._split}.txt")) split_dp = LineReader(split_dp, decode=True, return_path=False) split_dp = Mapper(split_dp, self._2010_split_key) anns_dp = Mapper(anns_dp, self._2010_anns_key) prepare_ann_fn = self._2010_prepare_ann split_dp = hint_shuffling(split_dp) split_dp = hint_sharding(split_dp) dp = IterKeyZipper( split_dp, images_dp, getitem(), path_accessor("name"), buffer_size=INFINITE_BUFFER_SIZE, ) dp = IterKeyZipper( dp, anns_dp, getitem(0), buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper( dp, functools.partial(self._prepare_sample, prepare_ann_fn=prepare_ann_fn))
def _make_datapipe( self, resource_dps: List[IterDataPipe], *, config: DatasetConfig, decoder: Optional[Callable[[io.IOBase], torch.Tensor]], ) -> IterDataPipe[Dict[str, Any]]: if config.year == "2011": archive_dp, segmentations_dp = resource_dps images_dp, split_dp, image_files_dp, bounding_boxes_dp = Demultiplexer( archive_dp, 4, self._2011_classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE) image_files_dp = CSVParser(image_files_dp, dialect="cub200") image_files_map = dict( (image_id, rel_posix_path.rsplit("/", maxsplit=1)[1]) for image_id, rel_posix_path in image_files_dp) split_dp = CSVParser(split_dp, dialect="cub200") split_dp = Filter( split_dp, functools.partial(self._2011_filter_split, split=config.split)) split_dp = Mapper(split_dp, getitem(0)) split_dp = Mapper(split_dp, image_files_map.get) bounding_boxes_dp = CSVParser(bounding_boxes_dp, dialect="cub200") bounding_boxes_dp = Mapper(bounding_boxes_dp, image_files_map.get, input_col=0) anns_dp = IterKeyZipper( bounding_boxes_dp, segmentations_dp, key_fn=getitem(0), ref_key_fn=self._2011_segmentation_key, keep_key=True, buffer_size=INFINITE_BUFFER_SIZE, ) else: # config.year == "2010" split_dp, images_dp, anns_dp = resource_dps split_dp = Filter(split_dp, path_comparator("name", f"{config.split}.txt")) split_dp = LineReader(split_dp, decode=True, return_path=False) split_dp = Mapper(split_dp, self._2010_split_key) anns_dp = Mapper(anns_dp, self._2010_anns_key) split_dp = hint_sharding(split_dp) split_dp = hint_shuffling(split_dp) dp = IterKeyZipper( split_dp, images_dp, getitem(), path_accessor("name"), buffer_size=INFINITE_BUFFER_SIZE, ) dp = IterKeyZipper( dp, anns_dp, getitem(0), buffer_size=INFINITE_BUFFER_SIZE, ) return Mapper( dp, functools.partial(self._collate_and_decode_sample, year=config.year, decoder=decoder))