def main(args): log_file_path = args.log if is_main_process() and log_file_path is not None: setup_log_file(os.path.expanduser(log_file_path)) distributed, device_ids = init_distributed_mode(args.world_size, args.dist_url) logger.info(args) cudnn.benchmark = True set_seed(args.seed) config = yaml_util.load_yaml_file(os.path.expanduser(args.config)) device = torch.device(args.device) dataset_dict = util.get_all_datasets(config['datasets']) models_config = config['models'] teacher_model_config = models_config.get('teacher_model', None) teacher_model = load_model( teacher_model_config, device) if teacher_model_config is not None else None student_model_config =\ models_config['student_model'] if 'student_model' in models_config else models_config['model'] ckpt_file_path = student_model_config['ckpt'] student_model = load_model(student_model_config, device) if args.log_config: logger.info(config) if not args.test_only: train(teacher_model, student_model, dataset_dict, ckpt_file_path, device, device_ids, distributed, config, args) student_model_without_ddp =\ student_model.module if module_util.check_if_wrapped(student_model) else student_model load_ckpt(student_model_config['ckpt'], model=student_model_without_ddp, strict=True) test_config = config['test'] test_data_loader_config = test_config['test_data_loader'] test_data_loader = util.build_data_loader( dataset_dict[test_data_loader_config['dataset_id']], test_data_loader_config, distributed) log_freq = test_config.get('log_freq', 1000) iou_types = args.iou_types if not args.student_only and teacher_model is not None: evaluate(teacher_model, test_data_loader, iou_types, device, device_ids, distributed, log_freq=log_freq, title='[Teacher: {}]'.format(teacher_model_config['name'])) evaluate(student_model, test_data_loader, iou_types, device, device_ids, distributed, log_freq=log_freq, title='[Student: {}]'.format(student_model_config['name']))
def main(args): log_file_path = args.log if is_main_process() and log_file_path is not None: setup_log_file(os.path.expanduser(log_file_path)) distributed, device_ids = init_distributed_mode(args.world_size, args.dist_url) logger.info(args) cudnn.benchmark = True config = yaml_util.load_yaml_file(os.path.expanduser(args.config)) device = torch.device(args.device) dataset_dict = util.get_all_dataset(config['datasets']) models_config = config['models'] teacher_model_config = models_config['teacher_model'] teacher_model = get_model(teacher_model_config, device, distributed, False) student_model_config = models_config['student_model'] student_model = get_model(student_model_config, device, distributed, args.sync_bn) if not args.test_only: distill(teacher_model, student_model, dataset_dict, device, device_ids, distributed, config, args) student_model_without_ddp =\ student_model.module if module_util.check_if_wrapped(student_model) else student_model load_ckpt(student_model_config['ckpt'], model=student_model_without_ddp, strict=True) test_config = config['test'] test_data_loader_config = test_config['test_data_loader'] test_data_loader = util.build_data_loader( dataset_dict[test_data_loader_config['dataset_id']], test_data_loader_config, distributed) if not args.student_only: evaluate(teacher_model, test_data_loader, device, device_ids, distributed, title='[Teacher: {}]'.format(teacher_model_config['name'])) evaluate(student_model, test_data_loader, device, device_ids, distributed, title='[Student: {}]'.format(student_model_config['name']))
def main(args): log_file_path = args.log if is_main_process() and log_file_path is not None: setup_log_file(os.path.expanduser(log_file_path)) world_size = args.world_size logger.info(args) cudnn.benchmark = True set_seed(args.seed) config = yaml_util.load_yaml_file(os.path.expanduser(args.config)) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() distributed = accelerator.state.distributed_type == DistributedType.MULTI_GPU device_ids = [accelerator.device.index] if distributed: setup_for_distributed(is_main_process()) logger.info(accelerator.state) device = accelerator.device # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel( logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Load pretrained model and tokenizer task_name = args.task_name models_config = config['models'] teacher_model_config = models_config.get('teacher_model', None) teacher_tokenizer, teacher_model = (None, None) if teacher_model_config is None \ else load_tokenizer_and_model(teacher_model_config, task_name, True) student_model_config =\ models_config['student_model'] if 'student_model' in models_config else models_config['model'] student_tokenizer, student_model = load_tokenizer_and_model( student_model_config, task_name) ckpt_dir_path = student_model_config['ckpt'] # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). dataset_dict, label_names_dict, is_regression = \ get_all_datasets(config['datasets'], task_name, student_tokenizer, student_model) # Update config with dataset size len(data_loader) customize_lr_config(config, dataset_dict, world_size) # register collate function register_collate_func( DataCollatorWithPadding( student_tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))) # Get the metric function metric = get_metrics(task_name) if not args.test_only: train(teacher_model, student_model, dataset_dict, is_regression, ckpt_dir_path, metric, device, device_ids, distributed, config, args, accelerator) student_tokenizer.save_pretrained(ckpt_dir_path) test_config = config['test'] test_data_loader_config = test_config['test_data_loader'] test_data_loader = util.build_data_loader( dataset_dict[test_data_loader_config['dataset_id']], test_data_loader_config, distributed) test_data_loader = accelerator.prepare(test_data_loader) if not args.student_only and teacher_model is not None: teacher_model = teacher_model.to(accelerator.device) evaluate(teacher_model, test_data_loader, metric, is_regression, accelerator, title='[Teacher: {}]'.format(teacher_model_config['name'])) # Reload best checkpoint based on validation result student_tokenizer, student_model = load_tokenizer_and_model( student_model_config, task_name, True) student_model = accelerator.prepare(student_model) evaluate(student_model, test_data_loader, metric, is_regression, accelerator, title='[Student: {}]'.format(student_model_config['name'])) # Output prediction for private dataset(s) if both the config and output dir path are given private_configs = config.get('private', None) private_output_dir_path = args.private_output if private_configs is not None and private_output_dir_path is not None and is_main_process( ): predict_private(student_model, dataset_dict, label_names_dict, is_regression, accelerator, private_configs, private_output_dir_path)