Example #1
0
 def __init__(self):
     super(MyConv, self).__init__()
     self.conv = nn.Sequential(
         exnn.Conv2d(20, 2),
         exnn.Conv2d(30, 2),
         exnn.Flatten(),
     )
Example #2
0
 def __init__(self):
     super(Net, self).__init__()
     self.conv = nn.Sequential(exnn.Conv2d(10, kernel_size=5),
                               nn.MaxPool2d(2), nn.ReLU(),
                               exnn.Conv2d(20, kernel_size=5),
                               nn.Dropout2d(), nn.MaxPool2d(2), nn.ReLU())
     self.linear = nn.Sequential(exnn.Linear(320, 50), nn.ReLU(),
                                 nn.Dropout(), exnn.Linear(50, 10),
                                 nn.LogSoftmax(dim=1))
Example #3
0
def conv2d(out_channels, kernel_size, stride):
    conv = nn.Sequential(
        exnn.Conv2d(out_channels=out_channels,
                    kernel_size=kernel_size,
                    stride=stride),
        nn.ReLU())
    return conv
Example #4
0
def conv2d(out_channels, kernel_size, stride):
    return exnn.Conv2d(out_channels=out_channels,
                       kernel_size=kernel_size,
                       stride=stride)
Example #5
0
def test_cuda_conv2d_with_seq():
    net = nn.Sequential(exnn.Conv2d(3, 2))
    net = net.to('cuda')
    x = torch.randn(10, 20, 28, 28).to('cuda')
    y = net(x)
    assert list(y.shape) == [10, 3, 27, 27]
Example #6
0
def test_cuda_conv2d():
    net = exnn.Conv2d(3, 2).to('cuda')
    x = torch.randn(10, 20, 28, 28).to('cuda')
    y = net(x)
    assert list(y.shape) == [10, 3, 27, 27]
Example #7
0
 def __init__(self):
     super(MyConv, self).__init__()
     self.conv = exnn.Conv2d(3, 2)
Example #8
0
 def __init__(self, out_channels, kernel_size, stride):
     super(ConvRelu, self).__init__()
     self.conv = exnn.Conv2d(out_channels=out_channels,
                             kernel_size=kernel_size,
                             stride=stride)
     self.relu = nn.ReLU()