def parse_backend_yaml( backend_yaml_path: str, grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], backend_indices: Dict[DispatchKey, BackendIndex], ) -> ParsedExternalYaml: native_functions_map: Dict[OperatorName, NativeFunction] = { f.func.name: f for f in concatMap( lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), grouped_native_functions, ) } with open(backend_yaml_path, "r") as f: yaml_values = yaml.load(f, Loader=YamlLoader) assert isinstance(yaml_values, dict) valid_keys = [ "backend", "class_name", "cpp_namespace", "extra_headers", "supported", "autograd", "full_codegen", "non_native", "ir_gen", ] backend = yaml_values.pop("backend", None) assert backend is not None, 'You must provide a value for "backend"' class_name = yaml_values.pop("class_name", None) cpp_namespace = yaml_values.pop("cpp_namespace", None) assert cpp_namespace is not None, 'You must provide a value for "cpp_namespace"' # Mostly just defaulting to false to stick with LazyTensor convention. use_out_as_primary = yaml_values.pop("use_out_as_primary", False) assert isinstance( use_out_as_primary, bool ), f"You must provide either True or False for use_out_as_primary. Provided: {use_out_as_primary}" use_device_guard = yaml_values.pop("device_guard", False) assert isinstance( use_device_guard, bool ), f"You must provide either True or False for device_guard. Provided: {use_device_guard}" supported = yaml_values.pop("supported", []) if supported is None: supported = [] # Allow an empty list of supported ops assert isinstance( supported, list ), f'expected "supported" to be a list, but got: {supported} (of type {type(supported)})' supported_autograd = yaml_values.pop("autograd", []) assert isinstance( supported_autograd, list ), f'expected "autograd" to be a list, but got: {supported_autograd}' # full_codegen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py full_codegen = yaml_values.pop("full_codegen", []) supported.extend(full_codegen) # non_native is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py non_native = yaml_values.pop("non_native", {}) # ir_gen is ignored by parse_backend_yaml, and re-parsed in gen_lazy_tensor.py _ = yaml_values.pop("ir_gen", {}) assert ( len(yaml_values.keys()) == 0 ), f'{backend_yaml_path} contains unexpected keys: {", ".join(yaml_values.keys())}. \ Only the following keys are supported: {", ".join(valid_keys)}' def create_backend_index( backend_ops: List[str], dispatch_key: DispatchKey, *, use_out_as_primary: bool, use_device_guard: bool, ) -> BackendIndex: metadata: Dict[OperatorName, BackendMetadata] = {} for op in backend_ops: op_name = OperatorName.parse(op) assert (op_name in native_functions_map ), f"Found an invalid operator name: {op_name}" # See Note [External Backends Follow Dispatcher API] kernel_name = dispatcher.name(native_functions_map[op_name].func) # TODO: allow structured external backends later. m = BackendMetadata(kernel=kernel_name, structured=False, cpp_namespace=cpp_namespace) metadata[op_name] = m return BackendIndex( dispatch_key=dispatch_key, use_out_as_primary=use_out_as_primary, external=True, symint=True, # TODO: make this configurable device_guard=use_device_guard, index=metadata, ) backend_key: Optional[DispatchKey] = None if len(supported) > 0: with context( lambda: f'The provided value for "backend" must be a valid DispatchKey, but got {backend}.' ): backend_key = DispatchKey.parse(backend) backend_idx = create_backend_index( supported, backend_key, use_out_as_primary=use_out_as_primary, use_device_guard=use_device_guard, ) assert backend_key not in backend_indices backend_indices[backend_key] = backend_idx autograd_key: Optional[DispatchKey] = None if len(supported_autograd) > 0: with context( lambda: f'The "autograd" key was specified, which indicates that you would like to override \ the behavior of autograd for some operators on your backend. However "Autograd{backend}" is not a valid DispatchKey.' ): autograd_key = DispatchKey.parse(f"Autograd{backend}") autograd_idx = create_backend_index( supported_autograd, autograd_key, use_out_as_primary=use_out_as_primary, use_device_guard=use_device_guard, ) assert autograd_key not in backend_indices backend_indices[autograd_key] = autograd_idx for g in grouped_native_functions: if isinstance(g, NativeFunction): forward_kernels = ([] if backend_key is None else [ m for m in [backend_indices[backend_key].get_kernel(g)] if m is not None ]) backward_kernels = ([] if autograd_key is None else [ m for m in [backend_indices[autograd_key].get_kernel(g)] if m is not None ]) else: forward_kernels = ([] if backend_key is None else [ m for m in [ backend_indices[backend_key].get_kernel(f) for f in g.functions() ] if m is not None ]) backward_kernels = ([] if autograd_key is None else [ m for m in [ backend_indices[autograd_key].get_kernel(f) for f in g.functions() ] if m is not None ]) forward_kernels = [f for f in forward_kernels if f is not None] backward_kernels = [f for f in backward_kernels if f is not None] assert ( len(forward_kernels) == 0 or len(backward_kernels) == 0 ), f'Currently, all variants of an op must either be registered to a backend key, or to a backend\'s \ autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! \ {forward_kernels[0].kernel} is listed under "supported", but {backward_kernels[0].kernel} is listed under "autograd".' return ParsedExternalYaml(backend_key, autograd_key, class_name, cpp_namespace, backend_indices)
def gen_dispatcher_registrations( fm: FileManager, output_dir: str, class_name: str, backend_indices: Dict[DispatchKey, BackendIndex], grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], backend_dispatch_key: DispatchKey, dispatch_key: DispatchKey, selector: "SelectiveBuilder", # build_in_tree is true for lazy TS backend and affects include paths, not used for external backends build_in_tree: bool = False, per_operator_headers: bool = False, backend_name: str = "", eager_registration: bool = True, ) -> None: headers = [ f"{output_dir}/{backend_dispatch_key}NativeFunctions.h", ] if build_in_tree: external_backend_headers_str = "\n".join(f"#include <{h}>" for h in headers) else: external_backend_headers_str = "\n".join(f'#include "{h}"' for h in headers) assert class_name is not None backend_index = backend_indices[dispatch_key] dispatch_registrations_body = list( concatMap( dest.RegisterDispatchKey( backend_index, Target.REGISTRATION, selector, rocm=False, class_method_name=f"{class_name}", skip_dispatcher_op_registration=False, ), grouped_native_functions, )) newline = "\n" ns_helper = NamespaceHelper(namespace_str="at") deferred_dispatch_registrations = "" static_init_dispatch_registrations = "" if eager_registration: static_template = CodeTemplate("""\ TORCH_LIBRARY_IMPL(aten, $dispatch_key, m) { $dispatch_registrations_body };""") static_init_dispatch_registrations = static_template.substitute( dispatch_key=dispatch_key, dispatch_registrations_body=dispatch_registrations_body, ) else: deferred_template = CodeTemplate("""\ TORCH_API void Register${backend_name}${dispatch_key}NativeFunctions() { static auto m = MAKE_TORCH_LIBRARY_IMPL(aten, $dispatch_key); $dispatch_registrations_body }""") deferred_dispatch_registrations = deferred_template.substitute( backend_name=backend_name, dispatch_key=dispatch_key, dispatch_registrations_body=dispatch_registrations_body, ) fm.write_with_template( f"Register{dispatch_key}.cpp", "RegisterDispatchKey.cpp", lambda: { "extra_cuda_headers": "", "external_backend_headers": external_backend_headers_str, "ops_headers": "#include <ATen/Functions.h>" if not per_operator_headers else "", "DispatchKey": dispatch_key, "dispatch_namespace": dispatch_key.lower(), "dispatch_headers": dest.gen_registration_headers(backend_index, per_operator_headers= per_operator_headers, rocm=False), "dispatch_definitions": fm.substitute_with_template( "RegisterDispatchDefinitions.ini", lambda: { "ns_prologue": ns_helper.prologue, "ns_epilogue": ns_helper.epilogue, "static_init_dispatch_registrations": static_init_dispatch_registrations, "deferred_dispatch_registrations": deferred_dispatch_registrations, "dispatch_helpers": dest.gen_registration_helpers(backend_index), "dispatch_namespace": dispatch_key.lower(), "dispatch_namespaced_definitions": "", "dispatch_anonymous_definitions": list( concatMap( dest.RegisterDispatchKey( backend_index, Target.ANONYMOUS_DEFINITION, selector, rocm=False, class_method_name=f"{class_name}", skip_dispatcher_op_registration=False, ), grouped_native_functions, )), }, ).split(newline), }, )