def intensity(self, x): transform = tio.OneOf([ tio.RandomMotion(translation=1), tio.RandomBlur(), tio.RandomGamma(), tio.RandomSpike(intensity=[0.2, 0.5]), tio.RandomBiasField() ]) x = transform(x.unsqueeze(0)).squeeze(0) return x
def __init__(self, X, Y, mixup=0, aug=False): self.X = X.astype('float32') self.Y = Y.astype('float32') self.aug = aug if self.aug: self.intensity = [ tio.RandomMotion(translation=1), tio.RandomBlur(), tio.RandomGamma(), tio.RandomSpike(intensity=[0.2, 0.5]), tio.RandomBiasField() ] else: self.intensity = None self.mixup = mixup
def train_transform(self): # tf_list = [iotf.CropOrPad(self.volume_size, padding_mode='edge')] tf_list = [] if self.randomflip['enable']: params = { key: val for key, val in self.randomflip.items() if key != 'enable' } tf_list.append(iotf.RandomFlip(**params)) if self.randomaffine['enable']: params = { key: val for key, val in self.randomaffine.items() if key != 'enable' } tf_list.append(iotf.RandomAffine(**params)) if self.randomblur['enable']: params = { key: val for key, val in self.randomblur.items() if key != 'enable' } tf_list.append(iotf.RandomBlur(**params)) if self.randomnoise['enable']: params = { key: val for key, val in self.randomnoise.items() if key != 'enable' } tf_list.append(iotf.RandomNoise(**params)) if self.randomswap['enable']: params = { key: val for key, val in self.randomswap.items() if key != 'enable' } tf_list.append(iotf.RandomSwap(**params)) if self.randomelasticdeformation['enable']: params = { key: val for key, val in self.randomelasticdeformation.items() if key != 'enable' } tf_list.append(iotf.RandomElasticDeformation(**params)) transform = iotf.Compose(tf_list) return transform