Example #1
0
 def intensity(self, x):
     transform = tio.OneOf([
         tio.RandomMotion(translation=1),
         tio.RandomBlur(),
         tio.RandomGamma(),
         tio.RandomSpike(intensity=[0.2, 0.5]),
         tio.RandomBiasField()
     ])
     x = transform(x.unsqueeze(0)).squeeze(0)
     return x
Example #2
0
    def __init__(self, X, Y, mixup=0, aug=False):

        self.X = X.astype('float32')
        self.Y = Y.astype('float32')
        self.aug = aug
        if self.aug:
            self.intensity = [
                tio.RandomMotion(translation=1),
                tio.RandomBlur(),
                tio.RandomGamma(),
                tio.RandomSpike(intensity=[0.2, 0.5]),
                tio.RandomBiasField()
            ]
        else:
            self.intensity = None
        self.mixup = mixup
Example #3
0
$ torchio-transform ~/Dropbox/MRI/t1.nii.gz RandomMotion /tmp/t1_motion.nii.gz --seed 42 --kwargs "degrees=10 translation=10 num_transforms=3 proportion_to_augment=1"

"""

from pprint import pprint
from torchio import Image, ImagesDataset, transforms, INTENSITY, LABEL, Subject

subject = Subject(
    Image('label', '~/Dropbox/MRI/t1_brain_seg.nii.gz', LABEL),
    Image('t1', '~/Dropbox/MRI/t1.nii.gz', INTENSITY),
)
subjects_list = [subject]

dataset = ImagesDataset(subjects_list)
sample = dataset[0]
transform = transforms.RandomMotion(
    seed=42,
    degrees=10,
    translation=10,
    num_transforms=3,
)
transformed = transform(sample)

pprint(transformed['t1']['random_motion_times'])
pprint(transformed['t1']['random_motion_degrees'])
pprint(transformed['t1']['random_motion_translation'])

dataset.save_sample(transformed, dict(t1='/tmp/t1_motion.nii.gz'))
dataset.save_sample(transformed, dict(label='/tmp/t1_brain_seg_motion.nii.gz'))
Example #4
0
subject = Subject(dic_suj)

subject = Subject(
    t1 = Image('/data/romain/HCPdata/suj_100307/T1w_1mm.nii.gz', INTENSITY),
    label = Image('/data/romain/HCPdata/suj_100307/T1w_1mm.nii.gz', LABEL),
    )

subjects_list = [subject]

dataset = ImagesDataset(subjects_list)

sample = dataset[0]
transform = transforms.RandomMotion(
    seed=2,
    degrees=0,
    translation=100,
    num_transforms=1,
    verbose=True,
    proportion_to_augment=1,
)
transformed = transform(sample)

_, random_parameters = transformed.history[0]

pprint(random_parameters['t1']['times'])
pprint(random_parameters['t1']['degrees'])
pprint(random_parameters['t1']['translation'])

dataset.save_sample(transformed, dict(t1='/tmp/t1_motion.nii.gz'))
dataset.save_sample(transformed, dict(label='/tmp/t1_brain_seg_motion.nii.gz'))
Example #5
0
$ torchio-transform ~/Dropbox/MRI/t1.nii.gz RandomMotion /tmp/t1_motion.nii.gz --seed 42 --kwargs "degrees=10 translation=10 num_transforms=3 proportion_to_augment=1"

"""

from pprint import pprint
from torchio import Image, ImagesDataset, transforms, INTENSITY, LABEL, Subject

subject = Subject(
    Image('label', '~/Dropbox/MRI/t1_brain_seg.nii.gz', LABEL),
    Image('t1', '~/Dropbox/MRI/t1.nii.gz', INTENSITY),
)
subjects_list = [subject]

dataset = ImagesDataset(subjects_list)
sample = dataset[0]
transform = transforms.RandomMotion(
    seed=42,
    degrees=10,
    translation=10,
    num_transforms=3,
    proportion_to_augment=1,
)
transformed = transform(sample)

pprint(transformed['t1']['random_motion_times'])
pprint(transformed['t1']['random_motion_degrees'])
pprint(transformed['t1']['random_motion_translation'])

dataset.save_sample(transformed, dict(t1='/tmp/t1_motion.nii.gz'))
dataset.save_sample(transformed, dict(label='/tmp/t1_brain_seg_motion.nii.gz'))
Example #6
0
from pprint import pprint
from torchio import ImagesDataset, transforms, INTENSITY

paths = [{
    't1': dict(path='~/Dropbox/MRI/t1.nii.gz', type=INTENSITY),
    'colin': dict(path='/tmp/colin27_t1_tal_lin.nii.gz', type=INTENSITY),
}]

dataset = ImagesDataset(paths)
sample = dataset[0]
transform = transforms.RandomMotion(
    seed=42,
    degrees=20,
    translation=15,
    num_transforms=3,
    verbose=True,
)
transformed = transform(sample)

pprint(transformed['t1']['random_motion_times'])

dataset.save_sample(transformed, dict(t1='/tmp/t1_motion.nii.gz'))
dataset.save_sample(transformed, dict(colin='/tmp/colin_motion.nii.gz'))