input_sparsity = 0.1 w_sparsity = 0.1 input_scaling = 0.5 n_test = 20 n_samples = 5000 leaky_rate = 0.1 reservoir_size = 400 # Argument args = tools.functions.argument_parser_training_model() # Transformer if args.lang == 'en' or args.lang == 'fr': transformer = transforms.Compose([ # transforms.RemoveLines(), transforms.GloveVector( model=tools.settings.lang_models[socket.gethostname()][args.lang]) ]) else: transformer = transforms.Compose([ # transforms.RemoveLines(), transforms.Token(model=tools.settings.lang_spacy_models[args.lang], lang=tools.settings.lang_models_lang[args.lang]), transforms.GensimModel(model_path=tools.settings.lang_models[ socket.gethostname()][args.lang]) ]) # end if # Samples average samples_average = np.array([]) best_acc = 0 best_model = None
args.description, args.get_space(), args.n_samples, args.k, verbose=args.verbose ) # CNN Glove Feature Selector cgfs = models.cgfs(pretrained=True, n_gram=2, n_features=60) # Remove last linear layer cgfs.linear2 = echotorch.nn.Identity() # Transformer transformer = transforms.Compose([ transforms.GloveVector(), transforms.ToNGram(n=2, overlapse=True), transforms.Reshape((-1, 1, 2, 300)), transforms.FeatureSelector(cgfs, 60, to_variable=True), transforms.Reshape((1, -1, 60)), transforms.Normalize(mean=-4.56512329954, std=0.911449706065) ]) # Reuters C50 dataset reutersloader = torch.utils.data.DataLoader(datasets.ReutersC50Dataset( root=args.dataset, download=True, n_authors=args.n_authors, transform=transformer), batch_size=1, shuffle=False)
# Experiment settings spectral_radius = 0.95 input_sparsity = 0.1 w_sparsity = 0.1 input_scaling = 0.5 n_test = 20 n_samples = 30 leaky_rate = 0.1 # Argument args = tools.functions.argument_parser_training_model() # Transformer transformer = transforms.Compose([ transforms.RemoveLines(), transforms.GloveVector(model=tools.settings.lang_models[args.lang]) ]) # Results parameter_averages = np.zeros(n_test) parameter_max = np.zeros(n_test) # For each leaky rate values index = 0 for rc_reservoir_size in np.linspace(200, 1000, n_test): # Round reservoir_size = int(math.floor(rc_reservoir_size)) # Log print(u"Reservoir size : {}".format(reservoir_size))