Example #1
0
def minkunet(net_id, pretrained=True, **kwargs):
    url_base = 'https://hanlab.mit.edu/files/SPVNAS/minkunet/'
    net_config = json.load(open(
        download_url(url_base + net_id + '/net.config', model_dir='.torch/minkunet/%s/' % net_id)
    ))

    model = MinkUNet(
        num_classes=net_config['num_classes'],
        cr=net_config['cr']
    ).to('cuda:%d'%dist.local_rank() if torch.cuda.is_available() else 'cpu')

    if pretrained:
        init = torch.load(
            download_url(url_base + net_id + '/init', model_dir='.torch/minkunet/%s/' % net_id),
            map_location='cuda:%d'%dist.local_rank() if torch.cuda.is_available() else 'cpu'
        )['model']
        model.load_state_dict(init)
    return model
Example #2
0
def spvnas_supernet(net_id, pretrained=True, **kwargs):
    url_base = 'https://hanlab.mit.edu/files/SPVNAS/spvnas_supernet/'
    net_config = json.load(open(
        download_url(url_base + net_id + '/net.config', model_dir='.torch/spvnas_supernet/%s/' % net_id)
    ))


    model = SPVNAS(
        net_config['num_classes'],
        macro_depth_constraint=net_config['macro_depth_constraint'],
        pres=net_config['pres'],
        vres=net_config['vres']
    ).to('cuda:%d'%dist.local_rank() if torch.cuda.is_available() else 'cpu')
    
    if pretrained:
        init = torch.load(
            download_url(url_base + net_id + '/init', model_dir='.torch/spvnas_supernet/%s/' % net_id),
            map_location='cuda:%d'%dist.local_rank() if torch.cuda.is_available() else 'cpu'
        )['model']
        model.load_state_dict(init)
    return model
Example #3
0
def main():
    warnings.filterwarnings("ignore")
    # parse args
    args, opt = parser.parse_known_args()
    opt = parse_unknown_args(opt)

    # setup gpu and distributed training
    if args.gpu is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
    if not torch.distributed.is_initialized():
        dist.init()
    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(dist.local_rank())

    # setup path
    os.makedirs(args.path, exist_ok=True)

    # setup random seed
    if args.resume:
        args.manual_seed = int(time.time())
    torch.manual_seed(args.manual_seed)
    torch.cuda.manual_seed_all(args.manual_seed)

    # load config
    exp_config = yaml.safe_load(open(args.config, "r"))
    partial_update_config(exp_config, opt)
    # save config to run directory
    yaml.dump(exp_config,
              open(os.path.join(args.path, "config.yaml"), "w"),
              sort_keys=False)

    # build data_loader
    image_size = exp_config["data_provider"]["image_size"]
    data_provider, n_classes = build_data_loader(
        exp_config["data_provider"]["dataset"],
        image_size,
        exp_config["data_provider"]["base_batch_size"],
        exp_config["data_provider"]["n_worker"],
        exp_config["data_provider"]["data_path"],
        dist.size(),
        dist.rank(),
    )

    # build model
    model = build_model(
        exp_config["model"]["name"],
        n_classes,
        exp_config["model"]["dropout_rate"],
    )
    print(model)

    # netaug
    if exp_config.get("netaug", None) is not None:
        use_netaug = True
        model = augemnt_model(model, exp_config["netaug"], n_classes,
                              exp_config["model"]["dropout_rate"])
        model.set_active(mode="min")
    else:
        use_netaug = False

    # load init
    if args.init_from is not None:
        init = load_state_dict_from_file(args.init_from)
        load_state_dict(model, init, strict=False)
        print("Loaded init from %s" % args.init_from)
    else:
        init_modules(model, init_type=exp_config["run_config"]["init_type"])
        print("Random Init")

    # profile
    profile_model = copy.deepcopy(model)
    # during inference, bn will be fused into conv
    remove_bn(profile_model)
    print(f"Params: {trainable_param_num(profile_model)}M")
    print(
        f"MACs: {inference_macs(profile_model, data_shape=(1, 3, image_size, image_size))}M"
    )

    # train
    exp_config["generator"] = torch.Generator()
    exp_config["generator"].manual_seed(args.manual_seed)
    model = nn.parallel.DistributedDataParallel(model.cuda(),
                                                device_ids=[dist.local_rank()])
    train(model, data_provider, exp_config, args.path, args.resume, use_netaug)
Example #4
0
def main() -> None:
    dist.init()

    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(dist.local_rank())

    parser = argparse.ArgumentParser()
    parser.add_argument('config', metavar='FILE', help='config file')
    parser.add_argument('--run-dir', metavar='DIR', help='run directory')
    args, opts = parser.parse_known_args()

    configs.load(args.config, recursive=True)
    configs.update(opts)

    if args.run_dir is None:
        args.run_dir = auto_set_run_dir()
    else:
        set_run_dir(args.run_dir)

    logger.info(' '.join([sys.executable] + sys.argv))
    logger.info(f'Experiment started: "{args.run_dir}".' + '\n' + f'{configs}')

    dataset = builder.make_dataset()
    dataflow = {}
    for split in dataset:
        sampler = torch.utils.data.DistributedSampler(
            dataset[split],
            num_replicas=dist.size(),
            rank=dist.rank(),
            shuffle=(split == 'train'),
        )
        dataflow[split] = torch.utils.data.DataLoader(
            dataset[split],
            batch_size=configs.batch_size // dist.size(),
            sampler=sampler,
            num_workers=configs.workers_per_gpu,
            pin_memory=True,
        )

    model = builder.make_model()
    model = torch.nn.parallel.DistributedDataParallel(
        model.cuda(),
        device_ids=[dist.local_rank()],
    )

    criterion = builder.make_criterion()
    optimizer = builder.make_optimizer(model)
    scheduler = builder.make_scheduler(optimizer)

    trainer = ClassificationTrainer(
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler,
        amp_enabled=configs.amp.enabled,
    )
    trainer.train_with_defaults(
        dataflow['train'],
        num_epochs=configs.num_epochs,
        callbacks=[
            SaverRestore(),
            InferenceRunner(
                dataflow['test'],
                callbacks=[
                    TopKCategoricalAccuracy(k=1, name='acc/top1'),
                    TopKCategoricalAccuracy(k=5, name='acc/top5'),
                ],
            ),
            MaxSaver('acc/top1'),
            Saver(),
        ],
    )
Example #5
0
def main() -> None:
    dist.init()

    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(dist.local_rank())

    parser = argparse.ArgumentParser()
    parser.add_argument('config', metavar='FILE', help='config file')
    parser.add_argument('--run-dir', metavar='DIR', help='run directory')
    parser.add_argument('--name', type=str, help='model name')
    args, opts = parser.parse_known_args()

    configs.load(args.config, recursive=True)
    configs.update(opts)

    if args.run_dir is None:
        args.run_dir = auto_set_run_dir()
    else:
        set_run_dir(args.run_dir)

    logger.info(' '.join([sys.executable] + sys.argv))
    logger.info(f'Experiment started: "{args.run_dir}".' + '\n' + f'{configs}')

    dataset = builder.make_dataset()
    dataflow = dict()
    for split in dataset:
        sampler = torch.utils.data.distributed.DistributedSampler(
            dataset[split],
            num_replicas=dist.size(),
            rank=dist.rank(),
            shuffle=(split == 'train'))
        dataflow[split] = torch.utils.data.DataLoader(
            dataset[split],
            batch_size=configs.batch_size if split == 'train' else 1,
            sampler=sampler,
            num_workers=configs.workers_per_gpu,
            pin_memory=True,
            collate_fn=dataset[split].collate_fn)

    
    if 'spvnas' in args.name.lower():
        model = spvnas_specialized(args.name)
    elif 'spvcnn' in args.name.lower():
        model = spvcnn(args.name)
    elif 'mink' in args.name.lower():
        model = minkunet(args.name)
    else:
        raise NotImplementedError
    
    #model = builder.make_model()
    model = torch.nn.parallel.DistributedDataParallel(
        model.cuda(),
        device_ids=[dist.local_rank()],
        find_unused_parameters=True)
    model.eval()

    criterion = builder.make_criterion()
    optimizer = builder.make_optimizer(model)
    scheduler = builder.make_scheduler(optimizer)
    meter = MeanIoU(configs.data.num_classes, 
                    configs.data.ignore_label)

    trainer = SemanticKITTITrainer(model=model,
                          criterion=criterion,
                          optimizer=optimizer,
                          scheduler=scheduler,
                          num_workers=configs.workers_per_gpu,
                          seed=configs.train.seed
                          )
    callbacks=Callbacks([
                          SaverRestore(),
                          MeanIoU(
                              configs.data.num_classes, 
                              configs.data.ignore_label
                          )
                      ])
    callbacks._set_trainer(trainer)
    trainer.callbacks = callbacks
    trainer.dataflow = dataflow['test']
    
    
    trainer.before_train()
    trainer.before_epoch()
    
    # important
    model.eval()
    
    for feed_dict in tqdm(dataflow['test'], desc='eval'):
        _inputs = dict()
        for key, value in feed_dict.items():
            if not 'name' in key:
                _inputs[key] = value.cuda()

        inputs = _inputs['lidar']
        targets = feed_dict['targets'].F.long().cuda(non_blocking=True)
        outputs = model(inputs)
       
        invs = feed_dict['inverse_map']
        all_labels = feed_dict['targets_mapped']
        _outputs = []
        _targets = []
        for idx in range(invs.C[:, -1].max()+1):
            cur_scene_pts = (inputs.C[:, -1] == idx).cpu().numpy()
            cur_inv = invs.F[invs.C[:, -1] == idx].cpu().numpy()
            cur_label = (all_labels.C[:, -1] == idx).cpu().numpy()
            outputs_mapped = outputs[cur_scene_pts][
                cur_inv].argmax(1)
            targets_mapped = all_labels.F[cur_label]
            _outputs.append(outputs_mapped)
            _targets.append(targets_mapped)
        outputs = torch.cat(_outputs, 0)
        targets = torch.cat(_targets, 0)
        output_dict = {
            'outputs': outputs,
            'targets': targets
        }
        trainer.after_step(output_dict)
    
    trainer.after_epoch()
Example #6
0
def main() -> None:
    dist.init()

    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(dist.local_rank())

    parser = argparse.ArgumentParser()
    parser.add_argument('config', metavar='FILE', help='config file')
    parser.add_argument('--run-dir', metavar='DIR', help='run directory')
    args, opts = parser.parse_known_args()

    configs.load(args.config, recursive=True)
    configs.update(opts)

    if args.run_dir is None:
        args.run_dir = auto_set_run_dir()
    else:
        set_run_dir(args.run_dir)

    logger.info(' '.join([sys.executable] + sys.argv))
    logger.info(f'Experiment started: "{args.run_dir}".' + '\n' + f'{configs}')

    # seed
    if ('seed' not in configs.train) or (configs.train.seed is None):
        configs.train.seed = torch.initial_seed() % (2**32 - 1)

    seed = configs.train.seed + dist.rank(
    ) * configs.workers_per_gpu * configs.num_epochs
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    dataset = builder.make_dataset()
    dataflow = dict()
    for split in dataset:
        sampler = torch.utils.data.distributed.DistributedSampler(
            dataset[split],
            num_replicas=dist.size(),
            rank=dist.rank(),
            shuffle=(split == 'train'))
        dataflow[split] = torch.utils.data.DataLoader(
            dataset[split],
            batch_size=configs.batch_size,
            sampler=sampler,
            num_workers=configs.workers_per_gpu,
            pin_memory=True,
            collate_fn=dataset[split].collate_fn)

    model = builder.make_model()
    model = torch.nn.parallel.DistributedDataParallel(
        model.cuda(),
        device_ids=[dist.local_rank()],
        find_unused_parameters=True)

    criterion = builder.make_criterion()
    optimizer = builder.make_optimizer(model)
    scheduler = builder.make_scheduler(optimizer)

    trainer = SemanticKITTITrainer(model=model,
                                   criterion=criterion,
                                   optimizer=optimizer,
                                   scheduler=scheduler,
                                   num_workers=configs.workers_per_gpu,
                                   seed=seed)
    trainer.train_with_defaults(
        dataflow['train'],
        num_epochs=configs.num_epochs,
        callbacks=[
            InferenceRunner(dataflow[split],
                            callbacks=[
                                MeanIoU(name=f'iou/{split}',
                                        num_classes=configs.data.num_classes,
                                        ignore_label=configs.data.ignore_label)
                            ]) for split in ['test']
        ] + [
            MaxSaver('iou/test'),
            Saver(),
        ])
Example #7
0
        "tinymbv2",
    ],
)

parser.add_argument("--init_from", type=str)
parser.add_argument("--reset_bn", action="store_true")
parser.add_argument("--save_path", type=str, default=None)

if __name__ == "__main__":
    args = parser.parse_args()
    # setup gpu and distributed training
    if args.gpu is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
    dist.init()
    torch.backends.cudnn.benchmark = True
    torch.cuda.set_device(dist.local_rank())

    # build data loader
    data_loader_dict, n_classes = build_data_loader(
        args.dataset,
        args.image_size,
        args.batch_size,
        args.n_worker,
        args.data_path,
        dist.size(),
        dist.rank(),
    )

    # build model
    model = build_model(args.model, n_classes, 0).cuda()