Example #1
0
    def __init__(self, root, transform=None, target_transform=None, download=False):
        self.root = os.path.expanduser(root)
        self.transform = transform
        self.target_transform = target_transform

        # Set up both the background and eval dataset
        omni_background = Omniglot(self.root, background=True, download=download)
        # Eval labels also start from 0.
        # It's important to add 964 to label values in eval so they don't overwrite background dataset.
        omni_evaluation = Omniglot(self.root,
                                   background=False,
                                   download=download,
                                   target_transform=lambda x: x + len(omni_background._characters))

        self.dataset = ConcatDataset((omni_background, omni_evaluation))
        self._bookkeeping_path = os.path.join(self.root, 'omniglot-bookkeeping.pkl')
Example #2
0
from torchvision.datasets.omniglot import Omniglot

Omniglot(root='./data', download=True)
Omniglot(root='./data', download=True, background=False)
def omniglot(train=True):
    dataset = Omniglot(root=root, background=train)
    image_name, character_class = list(zip(*dataset._flat_character_images))
    return image_name, character_class