def prepare_cv_datasets(dataname, batch_size):
    if dataname == 'mnist':
        ordinary_train_dataset = dsets.MNIST(root='/DATA1/datasets/mnist',
                                             train=True,
                                             transform=transforms.ToTensor(),
                                             download=False)
        test_dataset = dsets.MNIST(root='/DATA1/datasets/mnist',
                                   train=False,
                                   transform=transforms.ToTensor())
    elif dataname == 'kmnist':
        ordinary_train_dataset = dsets.KMNIST(root='/DATA1/datasets/kmnist',
                                              train=True,
                                              transform=transforms.ToTensor(),
                                              download=False)
        test_dataset = dsets.KMNIST(root='/DATA1/datasets/kmnist',
                                    train=False,
                                    transform=transforms.ToTensor())
    elif dataname == 'fashion':
        ordinary_train_dataset = dsets.FashionMNIST(
            root='/DATA1/datasets/fashion_mnist',
            train=True,
            transform=transforms.ToTensor(),
            download=False)
        test_dataset = dsets.FashionMNIST(root='/DATA1/datasets/fashion_mnist',
                                          train=False,
                                          transform=transforms.ToTensor())
    elif dataname == 'cifar10':
        train_transform = transforms.Compose([
            transforms.ToTensor(
            ),  # transforms.RandomHorizontalFlip(), transforms.RandomCrop(32,4),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.247, 0.243, 0.261))
        ])
        test_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465),
                                 (0.247, 0.243, 0.261))
        ])
        ordinary_train_dataset = dsets.CIFAR10(root='/DATA1/datasets/cifar10',
                                               train=True,
                                               transform=train_transform,
                                               download=False)
        test_dataset = dsets.CIFAR10(root='/DATA1/datasets/cifar10',
                                     train=False,
                                     transform=test_transform)

    train_loader = torch.utils.data.DataLoader(dataset=ordinary_train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=0)
    test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                              batch_size=batch_size,
                                              shuffle=False,
                                              num_workers=0)
    full_train_loader = torch.utils.data.DataLoader(
        dataset=ordinary_train_dataset,
        batch_size=len(ordinary_train_dataset.data),
        shuffle=True,
        num_workers=0)
    num_classes = 10
    return (full_train_loader, train_loader, test_loader,
            ordinary_train_dataset, test_dataset, num_classes)
import torch.nn.functional as F
from torchvision import transforms, datasets

#여러 환경에서 돌아가야 하는 코드를 공유할 때
USE_CUDA = torch.cuda.is_available()
DEVICE = torch.device("cuda" if USE_CUDA else "cpu")

#학습 데이터 전체를 총 몇 번이나 볼 것인가
EPOCHS = 30
BATCH_SIZE = 64

transform = transforms.Compose([transforms.ToTensor()])

#학습용 트레이닝셋, 성능 평가용 테스트셋
trainset = datasets.FashionMNIST(root='./.data/',
                                 train=True,
                                 download=True,
                                 transform=transform)

testset = datasets.FashionMNIST(root='./.data/',
                                train=False,
                                download=True,
                                transform=transform)

#매개변수에 앞서 불러온 데이터셋을 넣어주고 배치 크기를 지정해준다.
train_loader = torch.utils.data.DataLoader(dataset=trainset,
                                           batch_size=BATCH_SIZE,
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=testset,
                                          batch_size=BATCH_SIZE,
                                          shuffle=True)
Example #3
0
    def _get_data(self):

        if self.args.dataset_name == 'rot_mnist':
            data_obj_train = datasets.MNIST(self.root,
                                            train=True,
                                            download=self.download,
                                            transform=transforms.ToTensor())

            data_obj_test = datasets.MNIST(self.root,
                                           train=False,
                                           download=self.download,
                                           transform=transforms.ToTensor())
            mnist_imgs = torch.cat((data_obj_train.data, data_obj_test.data))
            mnist_labels = torch.cat(
                (data_obj_train.targets, data_obj_test.targets))

        elif self.args.dataset_name == 'fashion_mnist':
            data_obj_train = datasets.FashionMNIST(
                self.root,
                train=True,
                download=self.download,
                transform=transforms.ToTensor())

            data_obj_test = datasets.FashionMNIST(
                self.root,
                train=False,
                download=self.download,
                transform=transforms.ToTensor())
            mnist_imgs = torch.cat((data_obj_train.data, data_obj_test.data))
            mnist_labels = torch.cat(
                (data_obj_train.targets, data_obj_test.targets))

        # Get total number of labeled examples
        sup_inds = self.load_inds()
        mnist_labels = mnist_labels[sup_inds]
        mnist_imgs = mnist_imgs[sup_inds]
        mnist_size = mnist_labels.shape[0]
        print(type(mnist_imgs), mnist_labels.shape, mnist_imgs.shape)

        to_pil = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Resize((self.args.img_w, self.args.img_h))
        ])

        to_augment = transforms.Compose([
            transforms.RandomResizedCrop(self.args.img_w, scale=(0.7, 1.0)),
            transforms.RandomHorizontalFlip(),
        ])

        to_tensor = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307, ), (0.3081, ))
        ])

        # Choose subsets that should be included into the training
        training_list_img = []
        training_list_labels = []
        training_list_idx = []
        training_list_size = []

        # key: class labels, val: data indices
        indices_dict = {}
        for i in range(len(mnist_imgs)):
            key = int(mnist_labels[i].numpy())
            if key not in indices_dict.keys():
                indices_dict[key] = []
            indices_dict[key].append(i)

#         if self.data_case == 'test':
#             self.list_train_domains= ['30', '45']

        for domain in self.list_train_domains:
            # Run transforms
            mnist_img_rot = torch.zeros(
                (mnist_size, self.args.img_w, self.args.img_h))
            mnist_idx = []

            # Shuffling the images to create random across domains
            curr_indices_dict = copy.deepcopy(indices_dict)
            for key in curr_indices_dict.keys():
                random.shuffle(curr_indices_dict[key])

            for i in range(len(mnist_imgs)):
                if domain == '0':
                    mnist_img_rot[i] = to_tensor(to_pil(mnist_imgs[i]))
                else:
                    if self.data_case == 'train' and self.args.dataset_name == "fashion_mnist":
                        mnist_img_rot[i] = to_tensor(
                            to_augment(
                                transforms.functional.rotate(
                                    to_pil(mnist_imgs[i]), int(domain))))
                    else:
                        mnist_img_rot[i] = to_tensor(
                            transforms.functional.rotate(
                                to_pil(mnist_imgs[i]), int(domain)))

                mnist_idx.append(i)

            print('Source Domain ', domain)
            training_list_img.append(mnist_img_rot)
            training_list_labels.append(mnist_labels)
            training_list_idx.append(mnist_idx)
            training_list_size.append(mnist_img_rot.shape[0])

        # Making domain size equivalent everywhere by random sampling
        if self.data_case == 'train':
            num_classes = 10
            for y_c in range(num_classes):
                base_class_size = 0
                base_class_idx = -1
                for d_idx, domain in enumerate(self.list_train_domains):
                    class_idx = training_list_labels[d_idx] == y_c
                    curr_class_size = training_list_labels[d_idx][
                        class_idx].shape[0]
                    if base_class_size < curr_class_size:
                        base_class_size = curr_class_size
                        base_class_idx = d_idx
                self.base_domain_size += base_class_size
                print('Max Class Size: ', base_class_size, base_class_idx, y_c)

        # Stack
        train_imgs = torch.cat(training_list_img)
        train_labels = torch.cat(training_list_labels)
        train_indices = np.array(training_list_idx)
        train_indices = np.reshape(
            train_indices, (train_indices.shape[0] * train_indices.shape[1]))
        self.training_list_size = training_list_size
        print(train_imgs.shape, train_labels.shape, train_indices.shape)
        print(self.training_list_size)

        # Create domain labels
        train_domains = torch.zeros(train_labels.size())
        for idx in range(len(self.list_train_domains)):
            train_domains[idx * mnist_size:(idx + 1) * mnist_size] += idx

        # Shuffle everything one more time
        inds = np.arange(train_labels.size()[0])
        np.random.shuffle(inds)
        train_imgs = train_imgs[inds]
        train_labels = train_labels[inds]
        train_domains = train_domains[inds].long()
        train_indices = train_indices[inds]

        # Convert to onehot
        y = torch.eye(10)
        train_labels = y[train_labels]

        # Convert to onehot
        d = torch.eye(len(self.list_train_domains))
        train_domains = d[train_domains]

        print(train_imgs.shape, train_labels.shape, train_domains.shape,
              train_indices.shape)
        return train_imgs.unsqueeze(
            1), train_labels, train_domains, train_indices
Example #4
0
def fashion_mnist():
    return collect_download_configs(
        lambda: datasets.FashionMNIST(ROOT, download=True),
        name="FashionMNIST")
Example #5
0
    model.eval()
    ret = np.empty(shape=0)
    for data in input_loader:
        output = model(data)
        pred = output.max(1, keepdim=True)[1]
        pred = torch.Tensor.cpu(pred).detach().numpy()[:, :]
        ret = np.append(ret, pred)
    return ret


transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0, ), (1, )),
])  # normalize - zero mean and 1 std
batchSize = 64
train_loader = torch.utils.data.DataLoader(datasets.FashionMNIST(
    './data', train=True, download=True, transform=transform),
                                           batch_size=batchSize,
                                           shuffle=True)
# create the model for the run, my best - model C
model = Model_C(image_size=28 * 28)
lr = 0.001
optimizer = optim.Adam(model.parameters(), lr=lr)
epohcs_number = 10

for epoch in range(epohcs_number):
    train(epoch, model)

# predict from a file
if (len(sys.argv) > 1):
    fileName = sys.argv[1]
    train_x = np.loadtxt(fileName) / 255  # divided by 255 as the traning set
Example #6
0
    plt.xticks([]), plt.yticks([])

    if title is not None:
        plt.title(title)
    plt.savefig(path, dpi=100)


if __name__ == "__main__":
    '''
    ================
    Plot the dataset
    ================
    '''
    m_loader = torch.utils.data.DataLoader(datasets.MNIST(root='../data', train=False,\
        download=False, transform=transforms.ToTensor()), batch_size=25)
    f_loader = torch.utils.data.DataLoader(datasets.FashionMNIST(root='../data', train=False,\
        download=False, transform=transforms.ToTensor()), batch_size=25)

    m_data, m_label = iter(m_loader).next()
    plot(m_data, m_label)

    f_data, f_label = iter(f_loader).next()
    plot(f_data, f_label)
    '''
    ========================
    Plot the reuslt of model
    ========================
    '''
    data = np.load('../data/xs_mnist.npy')
    adv_data = np.load('../data/advs_mnist.npy')
    labels = np.load('../data/ys_mnist.npy')
    dataset = Dataset(data, adv_data, labels)
Example #7
0
    def __init__(self, args):
        # parameters
        self.epoch = args.epoch
        self.sample_num = 64
        self.batch_size = args.batch_size
        self.save_dir = args.save_dir
        self.result_dir = args.result_dir
        self.dataset = args.dataset
        self.log_dir = args.log_dir
        self.gpu_mode = args.gpu_mode
        self.model_name = args.gan_type

        # EBGAN parameters
        self.pt_loss_weight = 0.1
        self.margin = max(1, self.batch_size / 64.)  # margin for loss function
        # usually margin of 1 is enough, but for large batch size it must be larger than 1

        # networks init
        self.G = generator(self.dataset)
        self.D = discriminator(self.dataset)
        self.G_optimizer = optim.Adam(self.G.parameters(),
                                      lr=args.lrG,
                                      betas=(args.beta1, args.beta2))
        self.D_optimizer = optim.Adam(self.D.parameters(),
                                      lr=args.lrD,
                                      betas=(args.beta1, args.beta2))

        if self.gpu_mode:
            self.G.cuda()
            self.D.cuda()
            self.MSE_loss = nn.MSELoss().cuda()
        else:
            self.MSE_loss = nn.MSELoss()

        print('---------- Networks architecture -------------')
        utils.print_network(self.G)
        utils.print_network(self.D)
        print('-----------------------------------------------')

        # load dataset
        if self.dataset == 'mnist':
            self.data_loader = DataLoader(datasets.MNIST(
                'data/mnist',
                train=True,
                download=True,
                transform=transforms.Compose([transforms.ToTensor()])),
                                          batch_size=self.batch_size,
                                          shuffle=True)
        elif self.dataset == 'fashion-mnist':
            self.data_loader = DataLoader(datasets.FashionMNIST(
                'data/fashion-mnist',
                train=True,
                download=True,
                transform=transforms.Compose([transforms.ToTensor()])),
                                          batch_size=self.batch_size,
                                          shuffle=True)
        elif self.dataset == 'celebA':

            train_set = get_training_set(
                '/home/tmp_data_dir/zhaoyu/CelebA/img_align_celeba/',
                '/home/tmp_data_dir/zhaoyu/CelebA/img_align_celeba/')
            # train_set = get_training_set('/home/xujinchang/pytorch-CycleGAN-and-pix2pix/datasets/celeA_part/train/', '/home/xujinchang/pytorch-CycleGAN-and-pix2pix/datasets/celeA_part/train/')
            self.data_loader = DataLoader(dataset=train_set,
                                          batch_size=self.batch_size,
                                          shuffle=True)
            # self.data_loader = utils.load_celebA('data/celebA', transform=transforms.Compose(
            #     [transforms.CenterCrop(160), transforms.Scale(64), transforms.ToTensor()]), batch_size=self.batch_size,
            #                                      shuffle=True)
        self.z_dim = 62

        # fixed noise
        if self.gpu_mode:
            self.sample_z_ = Variable(torch.rand(
                (self.batch_size, self.z_dim)).cuda(),
                                      volatile=True)
        else:
            self.sample_z_ = Variable(torch.rand(
                (self.batch_size, self.z_dim)),
                                      volatile=True)
Example #8
0
def load_data(dataset: str, iid: str):
    """Loads a dataset.

    :param dataset: Name of the dataset
    :param iid: True if the dataset must not be splitted by target value
    :return: Train dataset, test dataset
    """
    path_to_dataset = '{0}/dataset/'.format(get_path_to_datasets())
    if dataset == "fake":

        transform = transforms.ToTensor()

        train_data = datasets.FakeData(size=200, transform=transform)

        test_data = datasets.FakeData(size=200, transform=transform)

    elif dataset == 'cifar10':

        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])

        transform_train = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.RandomCrop(32, 4),
            transforms.ToTensor(),
            normalize,
        ])

        transform_test = transforms.Compose([
            transforms.ToTensor(),
            normalize,
        ])

        train_data = datasets.CIFAR10(root=path_to_dataset, train=True, download=True, transform=transform_train)

        test_data = datasets.CIFAR10(root=path_to_dataset, train=False, download=True, transform=transform_test)

    elif dataset == 'mnist':

        # Normalization see : https://stackoverflow.com/a/67233938
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        train_data = datasets.MNIST(root=path_to_dataset, train=True, download=False, transform=transform)

        test_data = datasets.MNIST(root=path_to_dataset, train=False, download=False, transform=transform)

    elif dataset == "fashion_mnist":

        train_transforms = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])
        val_transforms = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])

        # Download and load the training data
        train_data = datasets.FashionMNIST(path_to_dataset, download=True, train=True, transform=train_transforms)

        # Download and load the test data
        test_data = datasets.FashionMNIST(path_to_dataset, download=True, train=False, transform=val_transforms)

    elif dataset == "femnist":

        transform = transforms.Compose([transforms.ToTensor()])

        train_data = FEMNISTDataset(path_to_dataset, download=True, train=True, transform=transform)

        test_data = FEMNISTDataset(path_to_dataset, download=True, train=False, transform=transform)

    elif dataset == "a9a":

        train_data = A9ADataset(train=True, iid=iid)

        test_data = A9ADataset(train=False, iid=iid)

    elif dataset == "mushroom":

        train_data = MushroomDataset(train=True, iid=iid)

        test_data = MushroomDataset(train=False, iid=iid)

    elif dataset == "phishing":

        train_data = PhishingDataset(train=True, iid=iid)

        test_data = PhishingDataset(train=False, iid=iid)

    elif dataset == "quantum":
        train_data = QuantumDataset(train=True, iid=iid)

        test_data = QuantumDataset(train=False, iid=iid)

    return train_data, test_data
    parser.add_argument('--repeat', type=int, default=200)
    parser.add_argument('--ngpu'  , type=int, default=1, help='number of GPUs to use')
    
    parser.add_argument('--state_E', default='./saved_models/fmnist/netE_pixel.pth', help='path to encoder checkpoint')
    parser.add_argument('--state_G', default='./saved_models/fmnist/netG_pixel.pth', help='path to encoder checkpoint')

    parser.add_argument('--state_E_bg', default='./saved_models/fmnist/netE_pixel_bg.pth', help='path to encoder checkpoint')
    parser.add_argument('--state_G_bg', default='./saved_models/fmnist/netG_pixel_bg.pth', help='path to encoder checkpoint')

    opt = parser.parse_args()
    
    cudnn.benchmark = True
    device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
    
    dataset_fmnist = dset.FashionMNIST(root=opt.dataroot, train=False, download=True, transform=transforms.Compose([
                                transforms.Resize(opt.imageSize),
                                transforms.ToTensor()
                            ]))
    dataloader_fmnist = torch.utils.data.DataLoader(dataset_fmnist, batch_size=opt.batch_size,
                                            shuffle=True, num_workers=int(opt.workers))

    dataset_mnist = dset.MNIST(root=opt.dataroot, train=False, download=True, transform=transforms.Compose([
                                transforms.Resize(opt.imageSize),
                                transforms.ToTensor()
                            ]))

    dataloader_mnist = torch.utils.data.DataLoader(dataset_mnist, batch_size=opt.batch_size,
                                            shuffle=True, num_workers=int(opt.workers))
    
#    
#    dataset_cifar_test = dset.CIFAR10(root=opt.dataroot, download=True,train = False,
#                                transform=transforms.Compose([
            _, predictions = scores.max(
                1)  # output shape is 64x10 --> take max among the cols
            num_correct += (predictions == y).sum()
            num_samples += predictions.size(0)

        acc = (float(num_correct) / float(num_samples)) * 100
        print(f"Got {num_correct} / {num_samples} with accuracy {acc:.2f}")

    model.train()
    return acc


device = "cuda" if torch.cuda.is_available() else "cpu"

train_dataset = datasets.FashionMNIST(root='./dataset',
                                      train=True,
                                      transform=transforms.ToTensor(),
                                      download=True)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=NetworkParameters.batch_size,
                          shuffle=True)

test_dataset = datasets.FashionMNIST(root='./dataset',
                                     train=False,
                                     transform=transforms.ToTensor(),
                                     download=True)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=NetworkParameters.batch_size,
                         shuffle=True)

model = FFNN(input_size=NetworkParameters.input_size,
             num_classes=NetworkParameters.num_class).to(device)
Example #11
0
def main(args):
    writer = SummaryWriter('./logs/{0}'.format(args.output_folder))
    save_filename = './models/{0}'.format(args.output_folder)

    if args.dataset in ['mnist', 'fashion-mnist', 'cifar10']:
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        if args.dataset == 'mnist':
            # Define the train & test datasets
            train_dataset = datasets.MNIST(args.data_folder,
                                           train=True,
                                           download=True,
                                           transform=transform)
            test_dataset = datasets.MNIST(args.data_folder,
                                          train=False,
                                          transform=transform)
            num_channels = 1
        elif args.dataset == 'fashion-mnist':
            # Define the train & test datasets
            train_dataset = datasets.FashionMNIST(args.data_folder,
                                                  train=True,
                                                  download=True,
                                                  transform=transform)
            test_dataset = datasets.FashionMNIST(args.data_folder,
                                                 train=False,
                                                 transform=transform)
            num_channels = 1
        elif args.dataset == 'cifar10':
            # Define the train & test datasets
            train_dataset = datasets.CIFAR10(args.data_folder,
                                             train=True,
                                             download=True,
                                             transform=transform)
            test_dataset = datasets.CIFAR10(args.data_folder,
                                            train=False,
                                            transform=transform)
            num_channels = 3
        valid_dataset = test_dataset
    elif args.dataset == 'miniimagenet':
        transform = transforms.Compose([
            transforms.RandomResizedCrop(128),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        # Define the train, valid & test datasets
        train_dataset = MiniImagenet(args.data_folder,
                                     train=True,
                                     download=True,
                                     transform=transform)
        valid_dataset = MiniImagenet(args.data_folder,
                                     valid=True,
                                     download=True,
                                     transform=transform)
        test_dataset = MiniImagenet(args.data_folder,
                                    test=True,
                                    download=True,
                                    transform=transform)
        num_channels = 3

    # Define the data loaders
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=False,
                                               num_workers=args.num_workers,
                                               pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(valid_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=False,
                                               drop_last=True,
                                               num_workers=args.num_workers,
                                               pin_memory=True)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=16,
                                              shuffle=True)

    # Fixed images for Tensorboard
    fixed_images, _ = next(iter(test_loader))
    fixed_grid = make_grid(fixed_images, nrow=8, range=(-1, 1), normalize=True)
    writer.add_image('original', fixed_grid, 0)

    model = VectorQuantizedVAE(num_channels, args.hidden_size,
                               args.k).to(args.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # Generate the samples first once
    reconstruction = generate_samples(fixed_images, model, args)
    grid = make_grid(reconstruction.cpu(),
                     nrow=8,
                     range=(-1, 1),
                     normalize=True)
    writer.add_image('reconstruction', grid, 0)

    best_loss = -1.
    for epoch in range(args.num_epochs):
        print(epoch)
        train(train_loader, model, optimizer, args, writer)
        loss, _ = test(valid_loader, model, args, writer)

        reconstruction = generate_samples(fixed_images, model, args)
        grid = make_grid(reconstruction.cpu(),
                         nrow=8,
                         range=(-1, 1),
                         normalize=True)
        writer.add_image('reconstruction', grid, epoch + 1)

        if (epoch == 0) or (loss < best_loss):
            best_loss = loss
            with open('{0}/best.pt'.format(save_filename), 'wb') as f:
                torch.save(model.state_dict(), f)
        with open('{0}/model_{1}.pt'.format(save_filename, epoch + 1),
                  'wb') as f:
            torch.save(model.state_dict(), f)
Example #12
0
def load_data(dataset, batch_size, no_validation=False, shuffle=False, data_file=None):
    """
    Loads training, validation and test data from the required dataset.

    :param dataset: name of the dataset
    :param batch_size: batch size for loaded dataset
    :param shuffle: true if training and validation datasets should be shuffled each iteration
    :param no_validation:  true if empty validation set should be returned
    :param data_file: directory of data files [needed for omniglot only]
    :return: (train data loader, validation data loader, test data loader)
    """
    if dataset == "omniglot":
        all_data = torch.load(data_file)
        x_train, x_val, x_test = all_data

        # dummy y values since no classes for omniglot
        y_train = torch.zeros(x_train.size(0), 1)
        y_val = torch.zeros(x_val.size(0), 1)
        y_test = torch.zeros(x_test.size(0), 1)

        train = torch.utils.data.TensorDataset(x_train, y_train)
        val = torch.utils.data.TensorDataset(x_val, y_val)
        test = torch.utils.data.TensorDataset(x_test, y_test)

        if no_validation:
            train = torch.utils.data.ConcatDataset([train, val])
            val = torch.utils.data.TensorDataset(torch.tensor([]), torch.tensor([]))

        train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=shuffle, drop_last=True)
        val_loader = torch.utils.data.DataLoader(val, batch_size=batch_size, shuffle=shuffle, drop_last=True)
        test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=False)

    elif dataset == "mnist":
        train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transforms.ToTensor())
        train_examples, val_examples = (50000, 10000)
        if no_validation:
            train_examples, val_examples = (60000, 0)
        train_set, val_set = torch.utils.data.random_split(train_dataset, [train_examples, val_examples])

        train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=shuffle, drop_last=True)
        val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=shuffle, drop_last=True)
        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('./data', train=False, transform=transforms.ToTensor()),
            batch_size=batch_size, shuffle=False)

    elif dataset == "fashion_mnist":
        train_dataset = datasets.FashionMNIST('./data', train=True, download=True, transform=transforms.ToTensor())
        train_examples, val_examples = (50000, 10000)
        if no_validation:
            train_examples, val_examples = (60000, 0)
        train_set, val_set = torch.utils.data.random_split(train_dataset, [train_examples, val_examples])

        train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=shuffle, drop_last=True)
        val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=shuffle, drop_last=True)
        test_loader = torch.utils.data.DataLoader(
            datasets.FashionMNIST('./data', train=False, transform=transforms.ToTensor()),
            batch_size=batch_size, shuffle=False)

    else:
        print("Error: {} dataset not supported!")
        quit()

    print('--------------------------------')
    print("{} dataset loaded".format(dataset))
    print("batch size: {}".format(batch_size))
    print("train batches: {}".format(len(train_loader)))
    print("validation batches: {}".format(len(val_loader)))
    print("test batches: {}".format(len(test_loader)))
    if shuffle:
        print("train and validation data will be shuffled")

    return train_loader, val_loader, test_loader
Example #13
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--batchSize', type=int, default=64)
    parser.add_argument('--Epochs', type=int, default=175)
    parser.add_argument('--no-cuda', action='store_true')
    parser.add_argument('--save')
    parser.add_argument('--seed', type=int, default=1)
    parser.add_argument('--opt',
                        type=str,
                        default='sgd',
                        choices=('sgd', 'adam', 'rmsprop'))
    args = parser.parse_args()

    #Check for cuda
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    args.save = args.save or 'postprocessing'
    setproctitle.setproctitle(args.save)

    #manual seed on CPU or GPU
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)

    #Path for saving the progress
    if os.path.exists(args.save):
        shutil.rmtree(args.save)
    os.makedirs(args.save, exist_ok=True)

    # mean and std of the Fashion-MNIST train dataset images
    normMean = [0.2860405969887955]
    normStd = [0.35302424451492237]
    normTransform = transforms.Normalize(normMean, normStd)

    # Transforms : Random crop, random horizontal flip

    trainTransform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(), normTransform
    ])

    # # Transforms : RandomRotation, RandomVerticalFlip
    # trainTransform = transforms.Compose([
    #     transforms.RandomRotation(90),
    #     transforms.RandomVerticalFlip(),
    #     transforms.ToTensor(),
    #     normTransform
    # ])
    testTransform = transforms.Compose([transforms.ToTensor(), normTransform])

    #Loading the datasets, if not found will be downloaded
    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
    loader_train = DataLoader(dataset.FashionMNIST(root='Fashion-MNIST',
                                                   train=True,
                                                   download=True,
                                                   transform=trainTransform),
                              batch_size=args.batchSize,
                              shuffle=True,
                              **kwargs)
    loader_test = DataLoader(dataset.FashionMNIST(root='Fashion-MNIST',
                                                  train=False,
                                                  download=True,
                                                  transform=testTransform),
                             batch_size=args.batchSize,
                             shuffle=False,
                             **kwargs)

    # Calling the  Densenet
    dense_net = densenet.DenseNet(growthRate=15,
                                  depth=100,
                                  reduction=0.5,
                                  bottleneck=True,
                                  nClasses=10)

    print('  + Number of params: {}'.format(
        sum([p.data.nelement() for p in dense_net.parameters()])))
    if args.cuda:
        dense_net = dense_net.cuda()
    else:
        print("no cuda")

    #Choosing the optimizer
    if args.opt == 'sgd':
        optimizer = optim.SGD(dense_net.parameters(),
                              lr=1e-1,
                              momentum=0.9,
                              weight_decay=1e-4)
    elif args.opt == 'adam':
        optimizer = optim.Adam(dense_net.parameters(), weight_decay=1e-4)
    elif args.opt == 'rmsprop':
        optimizer = optim.RMSprop(dense_net.parameters(), weight_decay=1e-4)

    #Progress being saved to csv files
    pfile_train = open(os.path.join(args.save, 'train.csv'), 'w')
    pfile_test = open(os.path.join(args.save, 'test.csv'), 'w')

    # running the training loop
    for epoch in range(1, args.Epochs + 1):
        adjust_optimizer(args.opt, optimizer, epoch)
        train(args, epoch, dense_net, loader_train, optimizer, pfile_train)
        test(args, epoch, dense_net, loader_test, pfile_test)
        torch.save(dense_net, os.path.join(args.save, 'latest.pth'))
        os.system('./plot.py {} &'.format(args.save))

    pfile_train.close()
    pfile_test.close()
    end = time.time()
    print(end - start)
Example #14
0
def get_dataset(name, data_dir, train=True, size=64, lsun_categories=None):
    transform = transforms.Compose([
        transforms.Resize(size),
        transforms.CenterCrop(size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
        transforms.Lambda(lambda x: x + 1. / 128 * torch.rand(x.size())),
    ])

    transformMnist = transforms.Compose([
        transforms.Resize(size),
        transforms.CenterCrop(size),
        transforms.ToTensor(),
        transforms.Normalize((0.5,), (0.5,)),
    ])

    if name == 'image':
        dataset = datasets.ImageFolder(data_dir, transform)
        nlabels = len(dataset.classes)
    elif name == 'npy':
        # Only support normalization for now
        dataset = datasets.DatasetFolder(data_dir, npy_loader, ['npy'])
        nlabels = len(dataset.classes)
    elif name == 'imagenet32':
        dataset = ImageNetDataset(dir=data_dir, img_size=size)
        nlabels = 1000
    elif name == 'imagenet64':
        dataset = ImageNetDataset(dir=data_dir, img_size=size)
        nlabels = 1000
    elif name == 'mnist':
        dataset = datasets.MNIST(root=data_dir, train=train, download=True,
                                 transform=transformMnist)
        nlabels = 10
    elif name == 'cifar10':
        if train:
            transform_train = transforms.Compose([
                transforms.Resize(size),
                transforms.RandomCrop(size, padding=4),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
            ])
            dataset = datasets.CIFAR10(root=data_dir, train=train, download=True,
                                       transform=transform_train)
        else:
            transform_test = transforms.Compose([
                transforms.Resize(size),
                transforms.ToTensor(),
                transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
            ])
            dataset = datasets.CIFAR10(root=data_dir, train=train, download=True,
                                       transform=transform_test)
        nlabels = 10
    elif name == 'fashionmnist':
        dataset = datasets.FashionMNIST(root=data_dir, train=train, download=True,
                                        transform=transformMnist)
        nlabels = 10
    elif name == 'lsun':
        if lsun_categories is None:
            lsun_categories = 'train'
        dataset = datasets.LSUN(data_dir, lsun_categories, transform)
        nlabels = len(dataset.classes)
    elif name == 'lsun_class':
        dataset = datasets.LSUNClass(data_dir, transform,
                                     target_transform=(lambda t: 0))
        nlabels = 1
    elif name == 'celeba':
        dataset = datasets.ImageFolder(root=data_dir, transform=transform)
        nlabels = 1
    else:
        raise NotImplemented

    return dataset, nlabels
Example #15
0
        test_dataloader = torch.utils.data.DataLoader(
            datasets.MNIST('./data/mnist', train=False, download=True,
                           transform=transforms.Compose([
                               transforms.Resize(args.img_size),
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                           ])),
            batch_size=args.batch_size, shuffle=True)
    
    elif args.dataset == 'fmnist':
            os.makedirs('./data/fmnist', exist_ok=True)
            train_dataloader = torch.utils.data.DataLoader(
                datasets.FashionMNIST('./data/fmnist', train=True, download=True,
                               transform=transforms.Compose([
                                   transforms.Resize(args.img_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                               ])),
                batch_size=args.batch_size, shuffle=True)
    
            test_dataloader = torch.utils.data.DataLoader(
                datasets.FashionMNIST('./data/fmnist', train=False, download=True,
                               transform=transforms.Compose([
                                   transforms.Resize(args.img_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                               ])),
                batch_size=args.batch_size, shuffle=True)
        
    elif args.dataset == 'cifar10':
        os.makedirs('./data/cifar10', exist_ok=True)
Example #16
0
                    help='number of epochs to train (default: 100)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')
parser.add_argument('--data_dir', type=str, default='data',
                    help='path of data directory')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--nf', type=int, default=32, help='number of features')
parser.add_argument('--result', type=str, default='results', help='dir of results')
args = parser.parse_args()

# prepare dataset
trans = transforms.Compose([
       transforms.Resize((32, 32)),
       transforms.ToTensor()
])
train_dataset = datasets.FashionMNIST(root = args.data_dir, download=True, transform=trans)
train_loader = data_utils.DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=1)
test_dataset = datasets.FashionMNIST(root = args.data_dir, download=True, transform = trans, train=False)
test_loader = data_utils.DataLoader(test_dataset, args.batch_size, shuffle=False, num_workers=1)

# define the network
def decode_unit(input_features, output_features):
    conv_unit = nn.Sequential(nn.ConvTranspose2d(input_features, output_features, 4, stride=2, padding=1),
                    nn.BatchNorm2d(output_features),
                    nn.LeakyReLU(0.2))
    return conv_unit

def encode_unit(input_features, output_features):
    conv_unit = nn.Sequential(nn.Conv2d(input_features, output_features, 6, stride=2, padding=2),
                    nn.BatchNorm2d(output_features),
                    nn.LeakyReLU(0.2))
Example #17
0
def main():
    # train args
    parser = argparse.ArgumentParser(
        description='Disributional Sliced Wasserstein Autoencoder')
    parser.add_argument('--datadir', default='./', help='path to dataset')
    parser.add_argument('--outdir',
                        default='./result',
                        help='directory to output images')
    parser.add_argument('--batch-size',
                        type=int,
                        default=512,
                        metavar='N',
                        help='input batch size for training (default: 512)')
    parser.add_argument('--epochs',
                        type=int,
                        default=200,
                        metavar='N',
                        help='number of epochs to train (default: 200)')
    parser.add_argument('--lr',
                        type=float,
                        default=0.0005,
                        metavar='LR',
                        help='learning rate (default: 0.0005)')
    parser.add_argument(
        '--num-workers',
        type=int,
        default=16,
        metavar='N',
        help='number of dataloader workers if device is CPU (default: 16)')
    parser.add_argument('--seed',
                        type=int,
                        default=16,
                        metavar='S',
                        help='random seed (default: 16)')
    parser.add_argument('--g', type=str, default='circular', help='g')
    parser.add_argument('--num-projection',
                        type=int,
                        default=1000,
                        help='number projection')
    parser.add_argument('--lam',
                        type=float,
                        default=1,
                        help='Regularization strength')
    parser.add_argument('--p', type=int, default=2, help='Norm p')
    parser.add_argument('--niter',
                        type=int,
                        default=10,
                        help='number of iterations')
    parser.add_argument('--r', type=float, default=1000, help='R')
    parser.add_argument('--latent-size',
                        type=int,
                        default=32,
                        help='Latent size')
    parser.add_argument('--dataset',
                        type=str,
                        default='MNIST',
                        help='(MNIST|FMNIST)')
    parser.add_argument(
        '--model-type',
        type=str,
        required=True,
        help=
        '(SWD|MSWD|DSWD|GSWD|DGSWD|JSWD|JMSWD|JDSWD|JGSWD|JDGSWD|CRAMER|JCRAMER|SINKHORN|JSINKHORN)'
    )
    args = parser.parse_args()

    torch.random.manual_seed(args.seed)
    if (args.g == 'circular'):
        g_function = circular_function
    model_type = args.model_type
    latent_size = args.latent_size
    num_projection = args.num_projection
    dataset = args.dataset
    model_dir = os.path.join(args.outdir, model_type)
    assert dataset in ['MNIST', 'FMNIST']
    assert model_type in [
        'SWD', 'MSWD', 'DSWD', 'GSWD', 'DGSWD', 'JSWD', 'JMSWD', 'JDSWD',
        'JGSWD', 'JDGSWD', 'CRAMER', 'JCRAMER', 'SINKHORN', 'JSINKHORN'
    ]
    if not (os.path.isdir(args.datadir)):
        os.makedirs(args.datadir)
    if not (os.path.isdir(args.outdir)):
        os.makedirs(args.outdir)
    if not (os.path.isdir(args.outdir)):
        os.makedirs(args.outdir)
    if not (os.path.isdir(model_dir)):
        os.makedirs(model_dir)
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    print('batch size {}\nepochs {}\nAdam lr {} \n using device {}\n'.format(
        args.batch_size, args.epochs, args.lr, device.type))
    # build train and test set data loaders
    if (dataset == 'MNIST'):
        image_size = 28
        num_chanel = 1
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST(args.datadir,
                           train=True,
                           download=True,
                           transform=transforms.Compose(
                               [transforms.ToTensor()])),
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.num_workers)
        test_loader = torch.utils.data.DataLoader(datasets.MNIST(
            args.datadir,
            train=False,
            download=True,
            transform=transforms.Compose([transforms.ToTensor()])),
                                                  batch_size=64,
                                                  shuffle=False,
                                                  num_workers=args.num_workers)
        model = MnistAutoencoder(image_size=28,
                                 latent_size=args.latent_size,
                                 hidden_size=100,
                                 device=device).to(device)
    elif (dataset == 'FMNIST'):
        image_size = 28
        num_chanel = 1
        train_loader = torch.utils.data.DataLoader(
            datasets.FashionMNIST(args.datadir,
                                  train=True,
                                  download=True,
                                  transform=transforms.Compose(
                                      [transforms.ToTensor()])),
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.num_workers)
        test_loader = torch.utils.data.DataLoader(datasets.FashionMNIST(
            args.datadir,
            train=False,
            download=True,
            transform=transforms.Compose([transforms.ToTensor()])),
                                                  batch_size=64,
                                                  shuffle=False,
                                                  num_workers=args.num_workers)
        model = MnistAutoencoder(image_size=28,
                                 latent_size=args.latent_size,
                                 hidden_size=100,
                                 device=device).to(device)
    if (model_type == 'DSWD' or model_type == 'DGSWD'):
        transform_net = TransformNet(28 * 28).to(device)
        op_trannet = optim.Adam(transform_net.parameters(),
                                lr=args.lr,
                                betas=(0.5, 0.999))
        # train_net(28 * 28, 1000, transform_net, op_trannet)
    elif (model_type == 'JDSWD' or model_type == 'JDSWD2'
          or model_type == 'JDGSWD'):
        transform_net = TransformNet(args.latent_size + 28 * 28).to(device)
        op_trannet = optim.Adam(transform_net.parameters(),
                                lr=args.lr,
                                betas=(0.5, 0.999))
        # train_net(args.latent_size + 28 * 28, 1000, transform_net, op_trannet)
    optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.5, 0.999))
    fixednoise = torch.randn((64, latent_size)).to(device)
    for epoch in range(args.epochs):
        total_loss = 0.0
        for batch_idx, (data, y) in tqdm(enumerate(train_loader, start=0)):
            if (model_type == 'SWD'):
                loss = model.compute_loss_SWD(data,
                                              torch.randn,
                                              num_projection,
                                              p=args.p)
            elif (model_type == 'GSWD'):
                loss = model.compute_loss_GSWD(data,
                                               torch.randn,
                                               g_function,
                                               args.r,
                                               num_projection,
                                               p=args.p)
            elif (model_type == 'MSWD'):
                loss, v = model.compute_loss_MSWD(data,
                                                  torch.randn,
                                                  p=args.p,
                                                  max_iter=args.niter)
            elif (model_type == 'DSWD'):
                loss = model.compute_lossDSWD(data,
                                              torch.randn,
                                              num_projection,
                                              transform_net,
                                              op_trannet,
                                              p=args.p,
                                              max_iter=args.niter,
                                              lam=args.lam)
            elif (model_type == 'DGSWD'):
                loss = model.compute_lossDGSWD(data,
                                               torch.randn,
                                               num_projection,
                                               transform_net,
                                               op_trannet,
                                               g_function,
                                               r=args.r,
                                               p=args.p,
                                               max_iter=args.niter,
                                               lam=args.lam)
            elif (model_type == 'JSWD'):
                loss = model.compute_loss_JSWD(data,
                                               torch.randn,
                                               num_projection,
                                               p=args.p)
            elif (model_type == 'JGSWD'):
                loss = model.compute_loss_JGSWD(data,
                                                torch.randn,
                                                g_function,
                                                args.r,
                                                num_projection,
                                                p=args.p)
            elif (model_type == 'JDSWD'):
                loss = model.compute_lossJDSWD(data,
                                               torch.randn,
                                               num_projection,
                                               transform_net,
                                               op_trannet,
                                               p=args.p,
                                               max_iter=args.niter,
                                               lam=args.lam)
            elif (model_type == 'JDGSWD'):
                loss = model.compute_lossJDGSWD(data,
                                                torch.randn,
                                                num_projection,
                                                transform_net,
                                                op_trannet,
                                                g_function,
                                                r=args.r,
                                                p=args.p,
                                                max_iter=args.niter,
                                                lam=args.lam)
            elif (model_type == 'JMSWD'):
                loss, v = model.compute_loss_MSWD(data,
                                                  torch.randn,
                                                  p=args.p,
                                                  max_iter=args.niter)
            elif (model_type == 'CRAMER'):
                loss = model.compute_loss_cramer(data, torch.randn)
            elif (model_type == 'JCRAMER'):
                loss = model.compute_loss_join_cramer(data, torch.randn)
            elif (model_type == 'SINKHORN'):
                loss = model.compute_wasserstein_vi_loss(data,
                                                         torch.randn,
                                                         n_iter=args.niter,
                                                         p=args.p,
                                                         e=1)
            elif (model_type == 'JSINKHORN'):
                loss = model.compute_join_wasserstein_vi_loss(
                    data, torch.randn, n_iter=args.niter, p=args.p, e=1)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            total_loss += loss.item()
        total_loss /= (batch_idx + 1)
        print("Epoch: " + str(epoch) + " Loss: " + str(total_loss))

        if (epoch % 1 == 0):
            model.eval()
            sampling(model_dir + '/sample_epoch_' + str(epoch) + ".png",
                     fixednoise, model.decoder, 64, image_size, num_chanel)
            if (model_type[0] == 'J'):
                for _, (input, y) in enumerate(test_loader, start=0):
                    input = input.to(device)
                    input = input.view(-1, image_size**2)
                    reconstruct(
                        model_dir + '/reconstruction_epoch_' + str(epoch) +
                        ".png", input, model.encoder, model.decoder,
                        image_size, num_chanel, device)
                    break
            model.train()
    def __init__(self,
                 which_set='Cifar-10',
                 root=None,
                 train=True,
                 download=True,
                 return_idxs=False,
                 num_classes=10,
                 aug=('random_order', 'random_h_flip', 'random_crop', 'random_rot_10', 'random_scale_0.9_1.1', 'random_shear_5', 'cutout'),
                 cut_n_holes=1,
                 cut_length=16,
                 ):
        assert which_set in ['Cifar-10', 'MNIST', 'Fashion-MNIST'], \
            "Must be Cifar, MNIST, or Fashion MNIST, {} not allowed".format(which_set)

        image_length = 32 if which_set == 'Cifar-10' else 28
        normalizer = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        if which_set == 'MNIST':
            normalizer = transforms.Normalize((0.1307,), (0.3081,))
        elif which_set == 'Fashion-MNIST':
            normalizer = transforms.Normalize((0.1307,), (0.3081,))


        transforms_list = []
        for augment in aug:
            ############### First do the things that don't change where the image is in the box
            if augment == 'random_h_flip':
                transforms_list.append(transforms.RandomHorizontalFlip())
            if augment == 'random_v_flip':
                transforms_list.append(transforms.RandomVerticalFlip())
            ############### Then mess with brightness etc.
            if augment == 'color_jitter':
                transforms_list.append(transforms.ColorJitter(brightness=0.3, contrast=0.3, hue=0.0))
            ############### Now do some sheering/cropping/rotation that changes where the images is
            if augment == 'affine':
                rot_degrees = 0
                scale_low = None
                scale_high = None
                shear_degrees = None
                for augment_inner in aug:
                    if 'random_rot' in augment_inner:
                        rot_degrees = int(augment_inner.split('_')[-1])
                    if 'random_scale' in augment_inner:
                        scale_low = float(augment_inner.split('_')[-2])
                        scale_high = float(augment_inner.split('_')[-1])
                    if 'random_shear' in augment_inner:
                        shear_degrees = int(augment_inner.split('_')[-1])


                transforms_list.append(transforms.RandomAffine(degrees=rot_degrees,
                                                               scale=None if (scale_low == None) or (scale_high == None) else (scale_low, scale_high),
                                                               shear=shear_degrees))
            if augment == 'random_crop':
                transforms_list.append(transforms.RandomCrop(size=[image_length, image_length], padding=4))


        transform = transforms.Compose(transforms_list) if 'random_order' not in aug else transforms.Compose([transforms.RandomOrder(transforms=transforms_list)])

        transform.transforms.append(transforms.ToTensor())
        transform.transforms.append(normalizer)

        for augment in aug:
            ############### Finally do things that are related to regularisation
            if augment == 'cutout':
                transform.transforms.append(Cutout(n_holes=cut_n_holes, length=cut_length))
            if augment == 'rainbowout':
                transform.transforms.append(RainbowOut())
            if augment == 'channelswap':
                transform.transforms.append(ChannelSwap())

        if which_set == 'MNIST':
            self.dataset = datasets.MNIST(root='../data/MNIST' if root is None else root,
                                          train=train,
                                          download=download,
                                          transform=transform)

        elif which_set == 'Fashion-MNIST':
            self.dataset = datasets.FashionMNIST(root='../data/Fashion-MNIST' if root is None else root,
                                                 train=train,
                                                 download=download,
                                                 transform=transform)

        else:
            self.dataset = datasets.CIFAR10(root='../data/Cifar-10' if root is None else root,
                                            train=train, download=download,
                                            transform=transform)

        self.return_idxs = return_idxs
        self.num_classes = num_classes
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
Example #19
0
def get_data(dataset, batch_size):

    # Get MNIST dataset.
    if dataset == 'MNIST':
        transform = transforms.Compose([
            transforms.Resize(28),
            transforms.CenterCrop(28),
            transforms.ToTensor()
        ])

        dataset = dsets.MNIST(root + 'mnist/',
                              train='train',
                              download=True,
                              transform=transform)

    # Get SVHN dataset.
    elif dataset == 'SVHN':
        transform = transforms.Compose([
            transforms.Resize(32),
            transforms.CenterCrop(32),
            transforms.ToTensor()
        ])

        dataset = dsets.SVHN(root + 'svhn/',
                             split='train',
                             download=True,
                             transform=transform)

    # Get FashionMNIST dataset.
    elif dataset == 'FashionMNIST':
        transform = transforms.Compose([
            transforms.Resize(28),
            transforms.CenterCrop(28),
            transforms.ToTensor()
        ])

        dataset = dsets.FashionMNIST(root + 'fashionmnist/',
                                     train='train',
                                     download=True,
                                     transform=transform)

    # Get CelebA dataset.
    # MUST ALREADY BE DOWNLOADED IN THE APPROPRIATE DIRECTOR DEFINED BY ROOT PATH!
    elif dataset == 'CelebA':
        transform = transforms.Compose([
            transforms.Resize(32),
            transforms.CenterCrop(32),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        dataset = dsets.CelebA(root + 'celeba/',
                               download=True,
                               transform=transform)

    # Create dataloader.
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=batch_size,
                                             shuffle=True)

    return dataloader
Example #20
0
	def __init__(self, args):
		# parameters
		self.epoch = args.epoch
		self.sample_num = 19
		self.batch_size = args.batch_size
		self.save_dir = args.save_dir
		self.result_dir = args.result_dir
		self.dataset = args.dataset
		self.dataroot_dir = args.dataroot_dir
		self.log_dir = args.log_dir
		self.gpu_mode = args.gpu_mode
		self.num_workers = args.num_workers
		self.model_name = args.gan_type
		self.loss_option = args.loss_option
		if len(args.loss_option) > 0:
			self.model_name = self.model_name + '_' + args.loss_option
			self.loss_option = args.loss_option.split(',')
		if len(args.comment) > 0:
			self.model_name = self.model_name + '_' + args.comment
		self.lambda_ = 0.25

		if self.dataset == 'MultiPie' or self.dataset == 'miniPie':
			self.Nd = 337 # 200
			self.Np = 9
			self.Ni = 20
			self.Nz = 50
		elif self.dataset == 'Bosphorus':
			self.Nz = 50
		elif self.dataset == 'CASIA-WebFace':
			self.Nd = 10885 
			self.Np = 13
			self.Ni = 20
			self.Nz = 50

		if not os.path.exists(self.result_dir + '/' + self.dataset + '/' + self.model_name):
			os.makedirs(self.result_dir + '/' + self.dataset + '/' + self.model_name)
		if not os.path.exists(os.path.join(self.save_dir, self.dataset, self.model_name)):
			os.makedirs(os.path.join(self.save_dir, self.dataset, self.model_name))

		# load dataset
		data_dir = os.path.join( self.dataroot_dir, self.dataset )
		if self.dataset == 'mnist':
			self.data_loader = DataLoader(datasets.MNIST(data_dir, train=True, download=True,
																		  transform=transforms.Compose(
																			  [transforms.ToTensor()])),
														   batch_size=self.batch_size, shuffle=True)
		elif self.dataset == 'fashion-mnist':
			self.data_loader = DataLoader(
				datasets.FashionMNIST(data_dir, train=True, download=True, transform=transforms.Compose(
					[transforms.ToTensor()])),
				batch_size=self.batch_size, shuffle=True)
		elif self.dataset == 'celebA':
			self.data_loader = utils.CustomDataLoader(data_dir, transform=transforms.Compose(
				[transforms.CenterCrop(160), transforms.Scale(64), transforms.ToTensor()]), batch_size=self.batch_size,
												 shuffle=True)
		elif self.dataset == 'MultiPie' or self.dataset == 'miniPie':
			self.data_loader = DataLoader( utils.MultiPie(data_dir,
					transform=transforms.Compose(
					[transforms.Scale(100), transforms.RandomCrop(96), transforms.ToTensor()])),
				batch_size=self.batch_size, shuffle=True) 
		elif self.dataset == 'CASIA-WebFace':
			self.data_loader = utils.CustomDataLoader(data_dir, transform=transforms.Compose(
				[transforms.Scale(100), transforms.RandomCrop(96), transforms.ToTensor()]), batch_size=self.batch_size,
												 shuffle=True)
		elif self.dataset == 'Bosphorus':
			self.data_loader = DataLoader( utils.Bosphorus(data_dir, use_image=True, skipCodes=['YR','PR','CR'],
											transform=transforms.ToTensor(),
											shape=128, image_shape=256),
											batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers)
			self.Nid = 105
			self.Npcode = len(self.data_loader.dataset.posecodemap)

		# fixed samples for reconstruction visualization
		print( 'Generating fixed sample for visualization...' )
		nPcodes = self.Npcode//4
		nSamples = self.sample_num-nPcodes
		sample_x2D_s = []
		sample_x3D_s = []
		for iB, (sample_x3D_,sample_y_,sample_x2D_) in enumerate(self.data_loader):
			sample_x2D_s.append( sample_x2D_ )
			sample_x3D_s.append( sample_x3D_ )
			if iB > nSamples // self.batch_size:
				break
		sample_x2D_s = torch.cat( sample_x2D_s )[:nSamples,:,:,:]
		sample_x3D_s = torch.cat( sample_x3D_s )[:nSamples,:,:,:]
		sample_x2D_s = torch.split( sample_x2D_s, 1 )
		sample_x3D_s = torch.split( sample_x3D_s, 1 )
		sample_x2D_s += (sample_x2D_s[0],)*nPcodes
		sample_x3D_s += (sample_x3D_s[0],)*nPcodes
		self.sample_x2D_ = torch.cat( sample_x2D_s )
		self.sample_x3D_ = torch.cat( sample_x3D_s )
		self.sample_pcode_ = torch.zeros( nSamples+nPcodes, self.Npcode )
		self.sample_pcode_[:nSamples,0]=1
		for iS in range( nPcodes ):
			ii = iS%self.Npcode
			self.sample_pcode_[iS+nSamples,ii] = 1
		self.sample_z_ = torch.rand( nSamples+nPcodes, self.Nz )

		fname = os.path.join( self.result_dir, self.dataset, self.model_name, 'samples.png' )
		nSpS = int(math.ceil( math.sqrt( nSamples+nPcodes ) )) # num samples per side
		utils.save_images(self.sample_x2D_[:nSpS*nSpS,:,:,:].numpy().transpose(0,2,3,1), [nSpS,nSpS],fname)

		fname = os.path.join( self.result_dir, self.dataset, self.model_name, 'sampleGT.npy')
		self.sample_x3D_.numpy().squeeze().dump( fname )

		if self.gpu_mode:
			self.sample_x2D_ = Variable(self.sample_x2D_.cuda(), volatile=True)
			self.sample_x3D_ = Variable(self.sample_x3D_.cuda(), volatile=True)
			self.sample_z_ = Variable(self.sample_z_.cuda(), volatile=True)
			self.sample_pcode_ = Variable(self.sample_pcode_.cuda(), volatile=True)
		else:
			self.sample_x2D_ = Variable(self.sample_x2D_, volatile=True)
			self.sample_x3D_ = Variable(self.sample_x3D_, volatile=True)
			self.sample_z_ = Variable(self.sample_z_, volatile=True)
			self.sample_pcode_ = Variable(self.sample_pcode_, volatile=True)

		# networks init
		self.G_3Dto2D = generator3Dto2D(self.Nid, self.Npcode, self.Nz)
		self.D_2D = discriminator2D(self.Nid, self.Npcode)
		
		self.G_3Dto2D_optimizer = optim.Adam(self.G_3Dto2D.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
		self.D_2D_optimizer = optim.Adam(self.D_2D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))

		if self.gpu_mode:
			self.G_3Dto2D.cuda()
			self.D_2D.cuda()
			self.CE_loss = nn.CrossEntropyLoss().cuda()
			self.BCE_loss = nn.BCELoss().cuda()
			self.MSE_loss = nn.MSELoss().cuda()
			self.L1_loss = nn.L1Loss().cuda()
		else:
			self.CE_loss = nn.CrossEntropyLoss()
			self.BCE_loss = nn.BCELoss()
			self.MSE_loss = nn.MSELoss()
			self.L1_loss = nn.L1Loss()

		print('init done')
Example #21
0
def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST')
    parser.add_argument('-m', '--model-directory', type=str, required=True,
                        help='location to store trained model')
    parser.add_argument('-d', '--diagram-directory', type=str, required=False,
                        help='location to store homology info')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--up-to', type=int, default=500, metavar='N',
                        help='How many testing exmaples for creating diagrams')
    parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('-ct', '--create-diagrams', action='store_true', default=False,
                        help='Whether to compute homology on dynamic graph after training')
    parser.add_argument('-ht', '--homology-train', action='store_true', default=False,
                        help='Whether to compute homology on static graph during training')
    parser.add_argument('-da', '--dataset', type=str, required=True,
                        help='which dataset to train on (mnist or fashionmnist)')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

    if args.dataset == 'mnist':
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([
                               transforms.ToTensor(),
                           ])), batch_size=args.batch_size, shuffle=True, **kwargs)

        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([
                               transforms.ToTensor(),
                           ])), batch_size=args.test_batch_size, shuffle=False, **kwargs)


    if args.dataset == 'fashion':
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data/fashion', train=True, download=True, transform=transforms.Compose([
                               transforms.ToTensor(),
                           ])), batch_size=args.batch_size, shuffle=True, **kwargs)

        test_loader = torch.utils.data.DataLoader(
            datasets.FashionMNIST('../data/fashion', train=False, download=True, transform=transforms.Compose([
                               transforms.ToTensor(),
                           ])), batch_size=args.test_batch_size, shuffle=False, **kwargs)


    model = FFF().to(device)
    # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    optimizer = optim.SGD(model.parameters(), lr=args.lr)
    res_df = []
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        if args.homology_train:
            res_df = test_homology(args,model,device,test_loader, epoch, res_df)
        else:
            test(args, model, device, test_loader)

    if args.homology_train and args.diagram_directory is not None:
        df_filename = model.save_string()
        df_filename = 'train_homology_' + df_filename[:df_filename.find('.pt')] + '.pkl'
        df_loc = os.path.join(args.diagram_directory, df_filename)
        res_df = pd.DataFrame(res_df)
        res_df.to_pickle(df_loc)

    save_path = os.path.join(args.model_directory, model.save_string())
    torch.save(model.state_dict(), save_path)

    if args.diagram_directory is not None and args.create_diagrams:
        create_diagrams(args, model)
Example #22
0
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

training_data = datasets.FashionMNIST(root="data",
                                      train=True,
                                      download=False,
                                      transform=ToTensor())

test_data = datasets.FashionMNIST(root="data",
                                  train=False,
                                  download=False,
                                  transform=ToTensor())

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(nn.Linear(28 * 28, 512),
                                               nn.ReLU(), nn.Linear(512, 512),
                                               nn.ReLU(), nn.Linear(512, 10),
                                               nn.ReLU())

    def forward(self, x):
        x = self.flatten(x)
def get_dataset(data_name='mnist',
                data_dir='data',
                train=True,
                label_id=None,
                crop_flip=True):
    """
    Get a dataset.
    :param data_name: str, name of dataset.
    :param data_dir: str, base directory of data.
    :param train: bool, return train set if True, or test set if False.
    :param label_id: None or int, return data with particular label_id.
    :param crop_flip: bool, whether use crop_flip as data augmentation.
    :return: pytorch dataset.
    """
    transform_1d_crop_flip = transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        # transforms.Normalize((0.5,), (0.5,))  # 1-channel, scale to [-1, 1]
    ])

    transform_1d = transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        #transforms.Normalize((0.5,), (0.5, ))
    ])

    transform_3d_crop_flip = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    transform_3d = transforms.Compose([
        transforms.ToTensor(),
        #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    if data_name == 'mnist':
        #if train:
        # when train is True, we use transform_1d_crop_flip by default unless crop_flip is set to False
        #    transform = transform_1d if crop_flip is False else transform_1d_crop_flip
        #else:
        #    transform = transform_1d

        dataset = datasets.MNIST(data_dir,
                                 train=train,
                                 download=True,
                                 transform=transform_1d)

    elif data_name == 'fashion':
        if train:
            # when train is True, we use transform_1d_crop_flip by default unless crop_flip is set to False
            transform = transform_1d if crop_flip is False else transform_1d_crop_flip
        else:
            transform = transform_1d

        dataset = datasets.FashionMNIST(data_dir,
                                        train=train,
                                        download=True,
                                        transform=transform)

    elif data_name == 'cifar10':
        if train:
            # when train is True, we use transform_1d_crop_flip by default unless crop_flip is set to False
            transform = transform_3d if crop_flip is False else transform_3d_crop_flip
        else:
            transform = transform_3d

        dataset = datasets.CIFAR10(data_dir,
                                   train=train,
                                   download=True,
                                   transform=transform)
    elif data_name == 'svhn':
        if train:
            # when train is True, we use transform_1d_crop_flip by default unless crop_flip is set to False
            transform = transform_3d if crop_flip is False else transform_3d_crop_flip
            split = 'train'
        else:
            transform = transform_3d
            split = 'test'

        dataset = datasets.SVHN(data_dir,
                                split=split,
                                download=True,
                                transform=transform)
    else:
        print('dataset {} is not available'.format(data_name))

    if label_id is not None:
        # select samples with particular label
        if data_name == 'cifar10':  #isinstance(dataset.targets, list):
            # for cifar10
            targets = np.array(dataset.targets)
            idx = targets == label_id
            dataset.targets = list(targets[idx])
            dataset.data = dataset.data[idx]
        elif data_name == 'svhn':
            idx = dataset.labels == label_id
            dataset.labels = dataset.labels[idx]
            dataset.data = dataset.data[idx]
        else:
            # for MNIST and FashionMNIST
            targets = dataset.targets
            data = dataset.data
            idx = targets == label_id
            dataset.targets = targets[idx]
            dataset.data = data[idx]
    return dataset
def load_fashion_mnist(batch_size, val_split=True, subset=[-1, -1, -1]):
    transformations = [transforms.ToTensor()]
    transformations.append(transforms.Normalize(
        (0.1307, ), (0.3081, )))  # This makes a huge difference!
    transform = transforms.Compose(transformations)

    if val_split:
        num_train = 50000  # Will split training set into 50,000 training and 10,000 validation images
        # Train set
        trainset = datasets.FashionMNIST(root='./data/fashion',
                                         train=True,
                                         download=True,
                                         transform=transform)
        trainset.data = trainset.train_data[:num_train, :, :]
        trainset.targets = trainset.train_labels[:num_train]
        # Validation set
        valset = datasets.FashionMNIST(root='./data/fashion',
                                       train=True,
                                       download=True,
                                       transform=transform)
        valset.data = valset.train_data[num_train:, :, :]
        valset.targets = valset.train_labels[num_train:]
        # Test set
        testset = datasets.FashionMNIST(root='./data/fashion',
                                        train=False,
                                        download=True,
                                        transform=transform)

        if subset[0] != -1:
            trainset = getSubset(trainset, subset[0])
        if subset[2] != -1:
            testset = getSubset(testset, subset[2])
        if subset[1] != -1:
            valset = getSubset(valset, subset[1])

        train_dataloader = DataLoader(trainset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=0)  # 50,000 images
        val_dataloader = DataLoader(valset,
                                    batch_size=batch_size,
                                    shuffle=True,
                                    num_workers=0)  # 10,000 images
        test_dataloader = DataLoader(testset,
                                     batch_size=batch_size,
                                     shuffle=False,
                                     num_workers=0)  # 10,000 images

        return train_dataloader, val_dataloader, test_dataloader
    else:
        trainset = datasets.FashionMNIST(root='./data/fashion',
                                         train=True,
                                         download=True,
                                         transform=transform)
        testset = datasets.FashionMNIST(root='./data/fashion',
                                        train=False,
                                        download=True,
                                        transform=transform)

        if subset[0] != -1:
            trainset = getSubset(trainset, subset[0])
        if subset[2] != -1:
            testset = getSubset(testset, subset[2])

        train_dataloader = DataLoader(trainset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=0)  # 60,000 images
        test_dataloader = DataLoader(testset,
                                     batch_size=batch_size,
                                     shuffle=False,
                                     num_workers=0)  # 10,000 images
        return train_dataloader, None, test_dataloader
Example #25
0
                    (data.squeeze().detach().cpu().numpy(), target.item()))


parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--test-batch-size',
                    type=int,
                    default=1,
                    metavar='N',
                    help='input batch size for testing (default: 1)')
parser.add_argument('--no-cuda',
                    action='store_true',
                    default=False,
                    help='disables CUDA training')
args = parser.parse_args()
test_loader = torch.utils.data.DataLoader(datasets.FashionMNIST(
    '../data',
    train=False,
    transform=transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.1307, ), (0.3081, ))])),
                                          batch_size=args.test_batch_size,
                                          shuffle=True)
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
print("开始筛选----------------------------------")
filter(args, BlackNet, device, test_loader)
print("筛选完毕----------------------------------")
print("得到{}个正确预测的样本".format(len(filter_data)))
filter_data = np.array(filter_data)
np.save('filter_data.npy', filter_data)
Example #26
0
        return x


# model initalizatioin
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hyperP = dict({'numEpoch': 10, 'lr': 1e-4, 'batchSize': 5})
if torch.cuda.is_available():
    hyperP['batchSize'] = 600
myModel = VGG8()
myLoss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(myModel.parameters(), lr=hyperP['lr'])
myModel.to(device)

# Download and load
train = DataLoader(datasets.FashionMNIST('data_fashionMNIST',
                                         train=True,
                                         download=True,
                                         transform=transforms.ToTensor()),
                   shuffle=True,
                   batch_size=hyperP['batchSize'])
test = DataLoader(datasets.FashionMNIST('data_fashionMNIST',
                                        train=False,
                                        download=True,
                                        transform=transforms.ToTensor()),
                  shuffle=False,
                  batch_size=hyperP['batchSize'])

print(sum(p.numel() for p in myModel.parameters() if p.requires_grad))


def testing(net, testloader):
    correct = 0
import torch
from torchvision import datasets, transforms
from torch import nn, optim
import torch.nn.functional as F
import helper
import matplotlib.pyplot as plt
# Define a transform to normalize the data
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# Download and load the training data
trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/',
                                 download=True,
                                 train=True,
                                 transform=transform)
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=64,
                                          shuffle=True)

# Download and load the test data
testset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/',
                                download=True,
                                train=False,
                                transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True)


class Classifier(nn.Module):
    def __init__(self):
        super().__init__()
Example #28
0
# 하이퍼파라미터
EPOCHS = 500
BATCH_SIZE = 100
USE_CUDA = torch.cuda.is_available()
DEVICE = torch.device("cuda" if USE_CUDA else "cpu")
print("Using Device:", DEVICE)


# 학습에 필요한 데이터셋을 로딩합니다. 

# Fashion MNIST 데이터셋
trainset = datasets.FashionMNIST('./.data',
    train=True,
    download=True,
    transform=transforms.Compose([
       transforms.ToTensor(),
       transforms.Normalize((0.5,), (0.5,))
    ]))
train_loader = torch.utils.data.DataLoader(
    dataset     = trainset,
    batch_size  = BATCH_SIZE,
    shuffle     = True)


# 생성자는 64차원의 랜덤한 텐서를 입력받아 이에 행렬곱(Linear)과 활성화 함수(ReLU, Tanh) 연산을 실행합니다. 생성자의 결과값은 784차원, 즉 Fashion MNIST 속의 이미지와 같은 차원의 텐서입니다.

# 생성자 (Generator)
G = nn.Sequential(
        nn.Linear(64, 256),
        nn.ReLU(),
def add_noise(img):
    noise = torch.randn(img.size()) * 0.2
    noisy_img = img + noise
    return noisy_img

def plot_sample_img(img, name):
    img = img.view(1, 28, 28)
    save_image(img, './sample_{}.png'.format(name))
 

img_transform = transforms.Compose([
    transforms.ToTensor(),
])

dataset = datasets.FashionMNIST('./data', transform=img_transform, download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

class autoencoder(nn.Module):
    def __init__(self):
        super(autoencoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Linear(28 * 28, 500),
            nn.Tanh())
        self.decoder = nn.Sequential(
            nn.Linear(500, 28*28),
            nn.Sigmoid())

    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
Example #30
0
from torch import optim
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import Dataset, Subset, DataLoader, random_split

MNIST_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.1307], [0.3081])
])
MNIST_train = datasets.MNIST('.', download=True, train = True, transform=MNIST_transform)
MNIST_test = datasets.MNIST('.', download=True, train = False, transform=MNIST_transform)
FASHION_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.2859], [0.3530])
])
FASHION_train = datasets.FashionMNIST('.', download=True, train=True, transform=MNIST_transform)
FASHION_test = datasets.FashionMNIST('.', download=True, train=False, transform=FASHION_transform)

class GridDataset(Dataset):
    def __init__(self, MNIST_dataset, FASHION_dataset): # pass in dataset
        assert len(MNIST_dataset) == len(FASHION_dataset)
        self.MNIST_dataset, self.FASHION_dataset = MNIST_dataset, FASHION_dataset
        self.targets = FASHION_dataset.targets
        torch.manual_seed(442) # Fix random seed for reproducibility
        N = len(MNIST_dataset)
        self.randpos = torch.randint(low=0,high=4,size=(N,)) # position of the FASHION-MNIST image
        self.randidx = torch.randint(low=0,high=N,size=(N,3)) # indices of MNIST images
    
    def __len__(self):
        return len(self.MNIST_dataset)