Example #1
0
    def test_random_resized_crop_video(self):
        numFrames = random.randint(4, 128)
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
        owidth = random.randint(5, (width - 2) / 2) * 2
        clip = torch.randint(0,
                             256, (numFrames, height, width, 3),
                             dtype=torch.uint8)
        result = Compose([
            transforms.ToTensorVideo(),
            transforms.RandomResizedCropVideo((oheight, owidth)),
        ])(clip)
        self.assertEqual(result.size(2), oheight)
        self.assertEqual(result.size(3), owidth)

        transforms.RandomResizedCropVideo((oheight, owidth)).__repr__()
Example #2
0
    def __init__(self, size, interpolation="bilinear", consistent=True, p=1.0):
        self.size = size
        self.interpolation = Image.BILINEAR if interpolation == "bilinear" else None
        self.consistent = consistent
        self.threshold = p

        self.operation_torch = transforms_video.RandomResizedCropVideo(
            size, interpolation_mode=interpolation)
def default_transformation_3D(split, size=224):
    return {
        "train": transforms.Compose([
            transforms_video.ToTensorVideo(),
            transforms_video.RandomResizedCropVideo(size),
            RandomVerticalFlipVideo(),
            transforms_video.RandomHorizontalFlipVideo(),
            transforms_video.NormalizeVideo(kinetics400_transform_dict["mean"], kinetics400_transform_dict["std"]),
        ]),
        "valid": transforms.Compose([
            transforms_video.ToTensorVideo(),
            VideoClipResize(size),  # not square
            transforms_video.CenterCropVideo(size),
            transforms_video.NormalizeVideo(kinetics400_transform_dict["mean"], kinetics400_transform_dict["std"]),
        ]),
        "test": transforms.Compose([
            transforms_video.ToTensorVideo(),
            VideoClipResize(size),  # not square
            transforms_video.CenterCropVideo(size),
            transforms_video.NormalizeVideo(kinetics400_transform_dict["mean"], kinetics400_transform_dict["std"]),
        ]),
    }[split]
Example #4
0
    def __init__(self,
                 segments,
                 segment_labels,
                 segment_logits,
                 segment_length,
                 input_size,
                 frame_stride=1):
        super(TrainDataset, self).__init__()
        self.segments = segments
        self.segment_labels = segment_labels
        self.segment_logits = segment_logits
        self.segment_length = int(segment_length)
        self.input_size = int(input_size)
        self.frame_stride = int(frame_stride)

        self.transforms = Compose([
            ToTensorVideo(),
            ResizeVideo(input_size),
            transforms.RandomResizedCropVideo(size=input_size),
            transforms.RandomHorizontalFlipVideo(),
            ToZeroOneVideo(),
            transforms.NormalizeVideo(breakfast.TENSOR_MEAN,
                                      breakfast.TENSOR_STD)
        ])
Example #5
0
def main_worker(gpu, ngpus_per_node, args):
    args.gpu = gpu
    # suppress printing if not master
    if args.multiprocessing_distributed and args.gpu != 0:

        def print_pass(*args):
            pass

        builtins.print = print_pass
    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)
    # create model
    print("=> creating model '{}'".format(args.arch))
    netG = moco.builder.MaskGenerator()
    netD = moco.builder.MoCo(models.__dict__[args.arch], args.moco_dim,
                             args.moco_k, args.moco_m, args.moco_t, args.mlp)
    print(netG)
    print(netD)

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            netG.cuda(args.gpu)
            netD.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(
                (args.workers + ngpus_per_node - 1) / ngpus_per_node)
            netG = torch.nn.parallel.DistributedDataParallel(
                netG, device_ids=[args.gpu], find_unused_parameters=True)
            netD = torch.nn.parallel.DistributedDataParallel(
                netD, device_ids=[args.gpu], find_unused_parameters=True)
        else:
            netG.cuda()
            netD.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            netG = torch.nn.parallel.DistributedDataParallel(netG)
            netD = torch.nn.parallel.DistributedDataParallel(netD)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        netG = netG.cuda(args.gpu)
        netD = netD.cuda(args.gpu)
        # comment out the following line for debugging
        # raise NotImplementedError("Only DistributedDataParallel is supported.")
    else:
        # AllGather implementation (batch shuffle, queue update, etc.) in
        # this code only supports DistributedDataParallel.
        pass  # raise NotImplementedError("Only DistributedDataParallel is supported.") for debug on cpu
    # torch.cuda.synchronize()
    optimizer_g = torch.optim.SGD(netG.parameters(),
                                  args.lr,
                                  momentum=args.momentum,
                                  weight_decay=args.weight_decay)
    optimizer_d = torch.optim.SGD(netD.parameters(),
                                  args.lr,
                                  momentum=args.momentum,
                                  weight_decay=args.weight_decay)
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)
    G_criterion = nn.L1Loss().cuda(args.gpu)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            netD.load_state_dict(checkpoint['state_dict'])
            #optimizer_d.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

        if os.path.isfile(args.resumeG):
            print("=> loading checkpoint '{}'".format(args.resumeG))
            if args.gpu is None:
                checkpoint = torch.load(args.resumeG)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resumeG, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            netG.load_state_dict(checkpoint['state_dict'])
            #optimizer_g.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resumeG, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resumeG))

    cudnn.benchmark = True

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    video_augmentation = transforms.Compose([
        transforms_video.ToTensorVideo(),
        transforms_video.RandomResizedCropVideo(args.crop_size, (0.2, 1)),
    ])
    audio_augmentation = moco.loader.DummyAudioTransform()
    augmentation = {'video': video_augmentation, 'audio': audio_augmentation}

    augmentation_gpu = moco.loader.MoCoAugmentV2(
        args.crop_size) if args.aug_plus else moco.loader.MoCoAugment(
            args.crop_size)

    train_dataset = Kinetics400(traindir,
                                args.frame_per_clip,
                                args.step_between_clips,
                                extensions='mp4',
                                transform=augmentation,
                                num_workers=4)

    train_sampler = RandomClipSampler(train_dataset.video_clips, 1)

    if args.distributed:
        # train_sampler = torch.utils.data.distributed.DistributedSampler(train_sampler)
        train_sampler = DistributedSampler(train_sampler)

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler,
                                               drop_last=True,
                                               multiprocessing_context="fork")
    if args.multiprocessing_distributed and args.gpu == 0:
        log_dir = "{}_bs={}_lr={}_cs={}_fpc={}".format(args.log_dir,
                                                       args.batch_size,
                                                       args.lr, args.crop_size,
                                                       args.frame_per_clip)
        writer = SummaryWriter(log_dir)
    else:
        writer = None
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer_d, epoch, args)
        adjust_learning_rate(optimizer_g, epoch, args)

        # train for one epoch
        train(train_loader, augmentation_gpu, criterion, G_criterion, netG,
              netD, optimizer_g, optimizer_d, epoch, args, writer)

        if (epoch + 1) % 10 == 0 and (not args.multiprocessing_distributed or
                                      (args.multiprocessing_distributed
                                       and args.rank % ngpus_per_node == 0)):
            ckp_dir = "{}_bs={}_lr={}_cs={}_fpc={}".format(
                args.ckp_dir, args.batch_size, args.lr, args.crop_size,
                args.frame_per_clip)
            save_checkpoint(epoch, {
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': netG.state_dict(),
            },
                            ckp_dir + '/netG',
                            max_save=20,
                            is_best=False)

            save_checkpoint(epoch, {
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': netD.state_dict(),
            },
                            ckp_dir + '/netD',
                            max_save=20,
                            is_best=False)
Example #6
0
def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    # suppress printing if not master
    if args.multiprocessing_distributed and args.gpu != 0:

        def print_pass(*args):
            pass

        builtins.print = print_pass

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)
    # create model
    print("=============> creating model '{}'".format(args.arch))
    model = models.__dict__[args.arch]()
    print(model)
    # freeze all layers but the last fc
    #     for name, param in model.named_parameters():
    #         if name not in ['fc.weight', 'fc.bias']:
    #             param.requires_grad = False
    # init the fc layer
    model.fc = nn.Linear(512, args.num_class, bias=True)
    model.fc.weight.data.normal_(mean=0.0, std=0.01)
    model.fc.bias.data.zero_()

    # load from pre-trained, before DistributedDataParallel constructor
    if args.pretrained:
        if os.path.isfile(args.pretrained):
            print("=> loading checkpoint '{}'".format(args.pretrained))
            checkpoint = torch.load(args.pretrained, map_location="cpu")

            # rename moco pre-trained keys
            state_dict = checkpoint['state_dict']
            for k in list(state_dict.keys()):
                # retain only encoder_q up to before the embedding layer
                if k.startswith('module.encoder_q'
                                ) and not k.startswith('module.encoder_q.fc'):
                    # remove prefix
                    state_dict[k[len("module.encoder_q."):]] = state_dict[k]
                # delete renamed or unused k
                del state_dict[k]

            args.start_epoch = 0
            msg = model.load_state_dict(state_dict, strict=False)
            assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}

            print("=> loaded pre-trained model '{}'".format(args.pretrained))
        else:
            print("=> no checkpoint found at '{}'".format(args.pretrained))

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(
                (args.workers + ngpus_per_node - 1) / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpu])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model)  #.cuda() for debug on cpu
    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)

    # optimize only the linear classifier
    parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
    # assert len(parameters) == 2  # fc.weight, fc.bias
    optimizer = torch.optim.SGD(parameters,
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code
    normalize_video = transforms_video.NormalizeVideo(
        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    video_augmentation_train = transforms.Compose([
        transforms_video.ToTensorVideo(),
        transforms_video.RandomResizedCropVideo(args.crop_size),
        transforms_video.RandomHorizontalFlipVideo(),
        normalize_video,
    ])
    video_augmentation_val = transforms.Compose([
        transforms_video.ToTensorVideo(),
        transforms_video.CenterCropVideo(args.crop_size),
        normalize_video,
    ])
    data_dir = os.path.join(args.data, 'data')
    anno_dir = os.path.join(args.data, 'anno')
    audio_augmentation = moco.loader.DummyAudioTransform()
    train_augmentation = {
        'video': video_augmentation_train,
        'audio': audio_augmentation
    }
    val_augmentation = {
        'video': video_augmentation_val,
        'audio': audio_augmentation
    }

    train_dataset = UCF101(data_dir,
                           anno_dir,
                           args.frame_per_clip,
                           args.step_between_clips,
                           fold=1,
                           train=True,
                           transform=train_augmentation,
                           num_workers=16)
    train_sampler = RandomClipSampler(train_dataset.video_clips, 10)
    if args.distributed:
        train_sampler = DistributedSampler(train_sampler)

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler,
                                               multiprocessing_context="fork")

    val_dataset = UCF101(data_dir,
                         anno_dir,
                         args.frame_per_clip,
                         args.step_between_clips,
                         fold=1,
                         train=False,
                         transform=val_augmentation,
                         num_workers=16)
    # Do not use DistributedSampler since it will destroy the testing iteration process
    val_sampler = UniformClipSampler(val_dataset.video_clips,
                                     args.clip_per_video)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=args.clip_per_video,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True,
                                             sampler=val_sampler,
                                             multiprocessing_context="fork")

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return
    if args.multiprocessing_distributed and args.gpu == 0:
        log_dir = "{}_bs={}_lr={}_cs={}_fpc={}".format(args.log_dir,
                                                       args.batch_size,
                                                       args.lr, args.crop_size,
                                                       args.frame_per_clip)
        writer = SummaryWriter(log_dir)
    else:
        writer = None
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, args, writer)

        # evaluate on validation set
        val_loss, acc1, acc5 = validate(val_loader, model, criterion, args)
        if writer is not None:
            writer.add_scalar('lincls_val/loss', val_loss, epoch)
            writer.add_scalar('lincls_val/acc1', acc1, epoch)
            writer.add_scalar('lincls_val/acc5', acc5, epoch)

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (
                args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            ckp_dir = "{}_bs={}_lr={}_cs={}_fpc={}".format(
                args.ckp_dir, args.batch_size, args.lr, args.crop_size,
                args.frame_per_clip)
            save_checkpoint(epoch, {
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer': optimizer.state_dict(),
            },
                            ckp_dir,
                            max_save=1,
                            is_best=is_best)