def test_bars_one_magnitude(): numpy.random.seed(1234) observations = numpy.random.normal(loc=1, size=(25, 100)) y = numpy.mean(observations, axis=1) canvas, axes, mark = toyplot.bars(y) assert_canvas_matches(canvas, "bars-one-magnitude")
def test_axes_bars_boundaries_masked_nan(): numpy.random.seed(1234) observations = numpy.random.normal(size=(50, 50)) b = numpy.ma.column_stack((numpy.min(observations, axis=1), numpy.median( observations, axis=1), numpy.max(observations, axis=1))) b[10:20, 0] = numpy.nan b[30:40, 1] = numpy.ma.masked b[20:30, 2] = numpy.nan canvas, axes, mark = toyplot.bars(b, baseline=None) assert_canvas_matches(canvas, "axes-bars-boundaries-masked-nan")
def test_axes_bars_magnitudes_masked_nan(): x = numpy.linspace(0, 2 * numpy.pi, 51) y = numpy.ma.column_stack(( 1 + 0.5 * numpy.sin(x), 1 + 0.5 * numpy.cos(x), 1 + 0.2 * numpy.sin(2 * x), )) y[8:18, 0] = numpy.nan y[33:43, 1] = numpy.ma.masked canvas, axes, mark = toyplot.bars(x, y) assert_canvas_matches(canvas, "axes-bars-magnitudes-masked-nan")
def ElectricityorGasPlotter(state, resource, zipcode=None): cp = toyplot.color.Palette() cpalpha = [] for i in cp: i['a'] = 0.4 cpalpha.append(i) colors = [cp[0], cpalpha[0], cp[1], cpalpha[1], cp[2], cpalpha[2]] if len(zipcode) != 5: zipcode = None if zipcode != None: j = requestmaker( api_url='cleap/v1/energy_expenditures_and_ghg_by_sector', source='NREL', zipcode=zipcode) geo = zipcode elif zipcode == None: state_abrev = us_state_abbrev[state] geo = state_abrev j = requestmaker( api_url='cleap/v1/energy_expenditures_and_ghg_by_sector', source='NREL', state=state_abrev) r = j['result'][list(j['result'].keys())[0]] labels = [ f'{geo} Res.', 'US Res.', f'{geo} Com.', 'US Com.', f'{geo} Ind.', 'US Ind.' ] if resource == 'Elec': i_res_elec = r['residential']['elec_mwh'] / r['residential'][ 'total_pop'] i_com_elec = r['commercial']['elec_mwh'] / r['residential']['total_pop'] i_ind_elec = r['industrial']['elec_mwh'] / r['residential']['total_pop'] us_res_elec = 3.64 us_com_elec = 3.29 us_ind_elec = 2.62 values_elec = [ i_res_elec, us_res_elec, i_com_elec, us_com_elec, i_ind_elec, us_ind_elec ] canvas_elec, axes_elec, mark_elec = toyplot.bars( values_elec, width=550, height=350, color=colors, label=f'{geo} Electricity Consumption Per Capita', ylabel='MWh') axes_elec.x.ticks.locator = toyplot.locator.Explicit(labels=labels) h_elec = toyplot.html.tostring(canvas_elec) return h_elec elif resource == 'Gas': i_res_gas = r['residential']['gas_mcf'] / r['residential']['total_pop'] i_com_gas = r['commercial']['gas_mcf'] / r['residential']['total_pop'] i_ind_gas = r['industrial']['gas_mcf'] / r['residential']['total_pop'] us_res_gas = 15.42 us_com_gas = 7.96 us_ind_gas = 19.8 values_gas = [ i_res_gas, us_res_gas, i_com_gas, us_com_gas, i_ind_gas, us_ind_gas ] canvas_gas, axes_gas, mark_gas = toyplot.bars( values_gas, width=550, height=350, color=colors, label=f'{geo} Natural Gas Consumption Per Capita', ylabel='MCF') axes_gas.x.ticks.locator = toyplot.locator.Explicit(labels=labels) h_gas = toyplot.html.tostring(canvas_gas) return h_gas