def traceFromMask(N, numholes, cda, fold, retro, primary, foldrot=0., retrorot=0.): #Vignette at proper hole h = hartmannMask() ind = h == N PT.vignette(ind=ind) #Continue trace up to retro and back to CDA PT.transform(0, -123.41, 1156.48 - 651.57 - 134.18, 0, 0, 0) PT.flat() PT.transform(0, 0, 0, pi, 0, 0) PT.transform(*retro) PT.zernsurfrot(retrosag, retrofig, 378. / 2, -8.993 * pi / 180 + retrorot) PT.itransform(*retro) PT.reflect() PT.transform(0, 0, 0, -pi, 0, 0) PT.transform(0, 123.41, -1156.48 + 651.57 + 134.18, 0, 0, 0) PT.flat() h = hartmannMask() ind = h == N PT.vignette(ind=ind) PT.transform(0, 0, -134.18, 0, 0, 0) rt = conicsolve.primrad(8475., 220., 8400.) PT.transform(0, -rt, 75., 0, 0, 0) PT.transform(*primary) PT.transform(0, rt, -8475., 0, 0, 0) PT.wolterprimary(220., 8400.) ind = logical_and(PT.z < 8525., PT.z > 8425.) PT.vignette(ind=ind) PT.reflect() PT.transform(0, -rt, 8475., 0, 0, 0) PT.itransform(*primary) PT.transform(0, rt, -8475., 0, 0, 0) PT.transform(0,-85.12,8400.-651.57+85.12\ ,0,0,0) PT.transform(0, 0, 0, -pi / 4, 0, 0) PT.transform(0, 0, 0, 0, 0, pi) PT.flat() PT.transform(*fold) PT.zernsurfrot(foldsag, foldfig, 406. / 2, -174.659 * pi / 180 + foldrot) PT.itransform(*fold) PT.reflect() PT.transform(0, 0, 0, 0, 0, -pi) PT.transform(0, 0, 0, 3 * pi / 4, 0, 0) PT.transform(0,-85.12,-85.12-(conicsolve.primfocus(220.,8400.)-651.57)\ ,0,0,0) PT.transform(*cda) PT.flat() return
def primMaskTrace(fold, primary, woltVignette=True, foldrot=0.): #Get Wolter parameters alpha, p, d, e = conicsolve.woltparam(220., 8400.) primfoc = conicsolve.primfocus(220., 8400.) #Trace to fold mirror #translate to center of fold mirror PT.transform(0., 85.12, primfoc - 651.57 + 85.12, 0, 0, 0) #rotate so surface normal points in correct direction PT.transform(0, 0, 0, -3 * pi / 4, 0, 0) PT.transform(0, 0, 0, 0, 0, pi) #trace to fold flat PT.flat() #Introduce fold misalignment PT.transform(*fold) PT.zernsurfrot(foldsag, foldfig, 406. / 2, -174.659 * pi / 180 + foldrot) PT.itransform(*fold) PT.reflect() PT.transform(0, 0, 0, 0, 0, -pi) PT.transform(0, 0, 0, pi / 4, 0, 0) #Translate to optical axis mid-plane, then down to image of #primary focus, place primary mirror and trace PT.transform(0, 85.12, 651.57 - 85.12, 0, 0, 0) PT.flat() ## pdb.set_trace() rt = conicsolve.primrad(8475., 220., 8400.) PT.transform(0, -rt, 75., 0, 0, 0) PT.transform(*primary) PT.transform(0, rt, -8475., 0, 0, 0) ## PT.wolterprimary(220.,8400.) PT.primaryLL(220., 8400., 8525., 8425., 30. * np.pi / 180., pcoeff, pax, paz) if woltVignette is True: ind = logical_and(PT.z < 8525., PT.z > 8425.) PT.vignette(ind=ind) PT.reflect() PT.transform(0, -rt, 8475., 0, 0, 0) PT.itransform(*primary) PT.transform(0, rt, -8475., 0, 0, 0) #Move back up to mask plane and trace flat PT.transform(0, 0, 8400. + 134.18, 0, 0, 0) PT.flat() ## pdb.set_trace() #Rays should now be at Hartmann mask plane return
def fullFromMask(N, cda, fold, retro, prim, sec, foldrot=0., retrorot=0.): ## pdb.set_trace() #Vignette at proper hole h = hartmannMask() ind = h == N PT.vignette(ind=ind) #Continue trace up to retro and back to CDA PT.transform(0, -123.41, 1156.48 - 651.57 - 134.18, 0, 0, 0) PT.flat() PT.transform(0, 0, 0, pi, 0, 0) PT.transform(*retro) PT.zernsurfrot(retrosag, retrofig, 378. / 2, -8.993 * pi / 180 + retrorot) PT.itransform(*retro) PT.reflect() PT.transform(0, 0, 0, -pi, 0, 0) #Back to mask PT.transform(0, 123.41, -1156.48 + 651.57 + 134.18, 0, 0, 0) PT.flat() h = hartmannMask() ind = h == N PT.vignette(ind=ind) #Place Wolter surfaces PT.transform(0, 0, -134.18 - 8400., 0, 0, 0) PT.transform(0, -conicsolve.primrad(8425., 220., 8400.), 8425., 0, 0, 0) PT.transform(*prim) PT.itransform(0, -conicsolve.primrad(8425., 220., 8400.), 8425., 0, 0, 0) ## PT.wolterprimary(220.,8400.) PT.primaryLL(220., 8400., 8525., 8425., 30. * np.pi / 180., pcoeff, pax, paz) pdb.set_trace() ind = logical_and(PT.z < 8525., PT.z > 8425.) PT.vignette(ind=ind) PT.transform(0, -conicsolve.primrad(8425., 220., 8400.), 8425., 0, 0, 0) PT.itransform(*prim) PT.itransform(0, -conicsolve.primrad(8425., 220., 8400.), 8425., 0, 0, 0) PT.reflect() #Wolter secondary PT.transform(0, -conicsolve.secrad(8325., 220., 8400.), 8325., 0, 0, 0) PT.transform(*sec) PT.itransform(0, -conicsolve.secrad(8325., 220., 8400.), 8325., 0, 0, 0) PT.woltersecondary(220., 8400.) ind = logical_and(PT.z < 8375., PT.z > 8275.) PT.vignette(ind=ind) PT.reflect() PT.transform(0, -conicsolve.secrad(8325., 220., 8400.), 8325., 0, 0, 0) PT.itransform(*sec) PT.itransform(0, -conicsolve.secrad(8325., 220., 8400.), 8325., 0, 0, 0) ## PT.woltersecondary(220.,8400.) ## ind = logical_and(PT.z<8375.,PT.z>8275.) ## PT.vignette(ind=ind) ## PT.reflect() #Back to fold PT.transform(0,-85.12,8400.-651.57+85.12\ ,0,0,0) PT.transform(0, 0, 0, -pi / 4, 0, 0) PT.transform(0, 0, 0, 0, 0, pi) PT.flat() PT.transform(*fold) PT.zernsurfrot(foldsag, foldfig, 406. / 2, -174.659 * pi / 180 + foldrot) PT.itransform(*fold) PT.reflect() PT.transform(0, 0, 0, 0, 0, -pi) #Back to CDA PT.transform(0, 0, 0, 3 * pi / 4, 0, 0) PT.transform(0,-85.12,-85.12-8400.+651.57\ ,0,0,0) PT.transform(*cda) PT.flat() return