def __init__(self, dataDir = "~", training_data_fileP1 = 'mood_training_p1.dat', training_data_fileP2 = 'mood_training.dat', data_p_file = 'tweets_positive_raw.dat', data_n_file = 'tweets_negative_raw.dat'): self.dataDir = dataDir self.clsP1 = MoodDetectTrainer(data_file = training_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file = training_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsPFile = open(os.path.join( self.dataDir,data_p_file),'rb') self.tweetsNFile = open(os.path.join( self.dataDir,data_n_file),'rb') self.limit['en'] = 150000 self.limit['default'] = 1000
# -*- coding: utf-8 -*- import sys sys.path.append('../../') from tracker.lib.mood_detection import MoodDetectTrainer import nltk import os, cPickle, gzip MD = MoodDetectTrainer() MD.load() #print MD.classifier.show_most_informative_features(50) fileName = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../data', 'mood_traing_test_50000.dat') MDT_data = cPickle.load(gzip.open(fileName, 'rb')) print nltk.classify.accuracy(MD.classifier, MDT_data)
def loadCls(): ThreadedTCPServer.langCls = LangDetect(supportedLangs) ThreadedTCPServer.moodCls = MoodDetect(MoodDetectTrainer())
class RawClassifier(object): statsData = {} dataDir = "~" limit = {} skip = 0 p2_f_limit = 0.75 def __init__(self, dataDir = "~", training_data_fileP1 = 'mood_training_p1.dat', training_data_fileP2 = 'mood_training.dat', data_p_file = 'tweets_positive_raw.dat', data_n_file = 'tweets_negative_raw.dat'): self.dataDir = dataDir self.clsP1 = MoodDetectTrainer(data_file = training_data_fileP1) self.clsP2 = MoodDetectTrainer(data_file = training_data_fileP2) self.langClassifier = LangDetect(supportedLangs) self.training_data_p1 = MoodDetectTrainData() self.training_data_p2 = MoodDetectTrainData() self.tweetsPFile = open(os.path.join( self.dataDir,data_p_file),'rb') self.tweetsNFile = open(os.path.join( self.dataDir,data_n_file),'rb') self.limit['en'] = 150000 self.limit['default'] = 1000 def classifyP1(self,stripSmiles=False): self.classifyRaw(self.tweetsNFile,'n',stripSmiles) self.classifyRaw(self.tweetsPFile,'p',stripSmiles) self.clsP1.train(self.training_data_p1) print "done training P1" print self.statsData def classifyP2(self): """ remove noisy n-grams """ _st={'tf':0,'df':0} for feutures,label in self.training_data_p1: lang = feutures.pop('x_lang') feuturesP2 = feutures.copy() for f,v in feutures.items(): prob = self.clsP1.classifier.prob_classify({f:v,'x_lang':lang}) _st['tf']+=1 if max(prob.prob('n'),prob.prob('p')) <= self.p2_f_limit: del feuturesP2[f] _st['df']+=1 if len(feuturesP2) >= 3: feuturesP2['x_lang']=lang self.training_data_p2.append((feuturesP2,label)) else: pass print len(self.training_data_p2), len(self.training_data_p1) print _st print "deleting p1 set" del self.training_data_p1 del self.clsP1 print "Done deleting p1 set" self.clsP2.train(self.training_data_p2) def stripSmiles(self,text): emos = [':)',':-)',';-)',': )',':d','=)',':p',';)','<3',':(',':-(',': ('] for item in emos: text = text.replace(item,"") return text def stats(self,lang,mood): if not self.statsData.has_key(lang): self.statsData[lang] = {'n':0,'p':0} if self.limit.has_key(lang): limit = self.limit[lang] else: limit = self.limit['default'] if self.statsData[lang][mood] >= limit: return 0 else: self.statsData[lang][mood]+=1 return 1 def checkDoubleEmo(self,mood,text): if mood == 'n': if text.find(':)') != -1: return True else: return False if mood == 'p': if text.find(':(') != -1: return True else: return False def classifyRaw(self,file,mood,stripSmiles): while True: try: tweet = cPickle.load(file) except EOFError: print "done for %s" % mood break except: pass if self.skip > 0: self.skip -= 1 continue if tweet: text = unicode(tweet.get('text')) if text.lower().find('rt ') != -1: continue if self.checkDoubleEmo(mood,text): continue lang = self.langClassifier.detect(text) if stripSmiles: text = self.stripSmiles(text) sres = self.stats(lang[0], mood) if sres == 0: continue if sres == -1: print "done for %s" % mood break self.training_data_p1.addRow(text, mood, lang[0]) def countRows(self,file): rows = 0 breakes = 0 while True: try: tweet = cPickle.load(file) rows +=1 except EOFError: break except: breakes +=1 print file print rows,breakes
# -*- coding: utf-8 -*- import sys sys.path.append('../../') from tracker.lib.mood_detection import MoodDetectTrainer import nltk import os,cPickle,gzip MD = MoodDetectTrainer() MD.load() #print MD.classifier.show_most_informative_features(50) fileName = os.path.join(os.path.dirname(os.path.abspath(__file__)),'../data', 'mood_traing_test_50000.dat') MDT_data = cPickle.load(gzip.open(fileName,'rb')) print nltk.classify.accuracy(MD.classifier, MDT_data)