def getData(self, histDataAsWell):
     '''
     Ici sur toutes les experiences dans self.expList on construit l'histogramme de toutes les features numeriques
     '''
     histDict = defaultdict(list)
     _,r, _, _,_, length, _, _, _ = histConcatenation(self.settings.data_folder, self.expList, self.settings.mitocheck_file,
                                     self.settings.quality_control_file, verbose=self.verbose)
     for feature in self.currInterestFeatures:
         for i in range(len(length)):
             histDict[feature].append(r[np.sum(length[:i]):np.sum(length[:i+1]),featuresSaved.index(feature)])
                 
     histogrammes, bins = computingBins(histDict, [self.bin_size for k in range(len(self.currInterestFeatures))], self.bin_type, iter_=self.iter_ )
                 
     return histogrammes, bins
def collectingData(iter_, expList, debut, fin):
    folder = "/cbio/donnees/aschoenauer/workspace2/Xb_screen/resultData/experiment_clustering/"

    histDict = defaultdict(list)

    _, r, _, who, ctrlStatus, length, genes, siRNAs, _ = histConcatenation(
        "/share/data20T/mitocheck/tracking_results",
        expList[debut:fin],
        "/cbio/donnees/aschoenauer/workspace2/Xb_screen/data/mitocheck_siRNAs_target_genes_Ens72.txt",
        "/cbio/donnees/aschoenauer/workspace2/Xb_screen/data/qc_export.txt",
    )

    for i in range(len(length)):
        for k, feature in enumerate(interestFeatures):
            histDict[feature].append(r[np.sum(length[:i]) : np.sum(length[: i + 1]), featuresSaved.index(feature)])

    f = open("../resultData/experiment_clustering/distExp_ctrl_quantile_10.pkl")
    bins = pickle.load(f)
    f.close()

    histogrammes, bins = computingBins(histDict, [10 for k in range(16)], "quantile", previous_binning=bins)
    f = open(os.path.join(folder, "data_{}.pkl".format(iter_)), "w")
    pickle.dump((histogrammes, who, ctrlStatus, genes, siRNAs), f)
    f.close()
    def _dataPrep(self, pcaParameter):
        histDict = defaultdict(list)

        ctrlExp = appendingControl(self.expList)
        ctrlExp = countingDone(ctrlExp)
        np.random.shuffle(ctrlExp)
        ctrlExp = ctrlExp[: int(0.2 * len(self.expList))]
        if self.verbose:
            print ctrlExp
        self.expList.extend(ctrlExp)

        _, r, _, _, _, length, _, _, _ = histConcatenation(
            self.settings.data_folder,
            self.expList,
            self.settings.mitocheck_file,
            self.settings.quality_control_file,
            verbose=self.verbose,
        )
        for i in range(len(length)):
            for k, feature in enumerate(self.currInterestFeatures):
                histDict[feature].append(r[np.sum(length[:i]) : np.sum(length[: i + 1]), featuresSaved.index(feature)])

        f = open(
            os.path.join(self.settings.result_folder, "distExp_ctrl_{}_{}.pkl".format(self.bins_type, self.bin_size))
        )
        bins = pickle.load(f)
        f.close()

        histogrammes, bins = computingBins(
            histDict,
            [self.bin_size for k in range(len(self.currInterestFeatures))],
            self.bins_type,
            previous_binning=bins,
        )
        print histogrammes.shape
        return histogrammes, bins