Example #1
0
def LensPlaneWCS(pos):
    '''
      The "local" WCS -- useful when you need to work on the sky, but in
      small offsets from RA, Dec in arcsec. Initialisation is with the
      coordinates of the central pixel, which is set to be the origin of
      the "pixel coordinate" system. Return a WCS object.
      '''

    onearcsec = 1.0 / 3600.0

    return tractor.FitsWcs(
        util.Tan(pos.ra, pos.dec, 1.0, 1.0, -onearcsec, 0.0, 0.0, onearcsec, 0,
                 0))
Example #2
0
def PS1WCS(hdr):
    '''
      Return a WCS object initialised from a PS1 file header.
      WARNING: PC matrix not being used, determinant may be wrong sign...
      Need to check with literature image of H1413
      '''
    t = util.Tan()
    t.set_crpix(hdr['CRPIX1'], hdr['CRPIX2'])
    t.set_crval(hdr['CRVAL1'], hdr['CRVAL2'])
    t.set_cd(hdr['CDELT1'], 0., 0., hdr['CDELT2'])
    t.set_imagesize(hdr['NAXIS1'], hdr['NAXIS2'])

    return tractor.FitsWcs(t)
Example #3
0
def main():

    # In LSST meas-deblend (on lsst6):
    # python examples/suprimePlot.py --data ~dstn/lsst/ACT-data -v 126969 -c 5 --data-range -100 300 --roi 0 500 0 500 --psf psf.fits --image img.fits --sources srcs.fits

    from optparse import OptionParser
    import sys

    parser = OptionParser(usage=('%prog <img> <psf> <srcs>'))
    parser.add_option('-v',
                      '--verbose',
                      dest='verbose',
                      action='count',
                      default=0,
                      help='Make more verbose')
    opt, args = parser.parse_args()

    if len(args) != 3:
        parser.print_help()
        sys.exit(-1)

    if opt.verbose == 0:
        lvl = logging.INFO
    else:
        lvl = logging.DEBUG
    logging.basicConfig(level=lvl, format='%(message)s', stream=sys.stdout)

    imgfn, psffn, srcfn = args

    pimg = pyfits.open(imgfn)
    if len(pimg) != 4:
        print('Image must have 3 extensions')
        sys.exit(-1)
    img = pimg[1].data
    mask = pimg[2].data
    maskhdr = pimg[2].header
    var = pimg[3].data
    del pimg

    print('var', var.shape)
    #print var
    print('mask', mask.shape)
    #print mask
    print('img', img.shape)
    #print img

    mask = mask.astype(np.int16)
    for bit in range(16):
        on = ((mask & (1 << bit)) != 0)
        print('Bit', bit, 'has', np.sum(on), 'pixels set')
    '''
	MP_BAD  =                    0
	Bit 0 has 2500 pixels set
	MP_SAT  =                    1
	Bit 1 has 5771 pixels set
	MP_INTRP=                    2
	Bit 2 has 11269 pixels set
	MP_CR   =                    3
	Bit 3 has 136 pixels set
	MP_EDGE =                    4
	Bit 4 has 11856 pixels set
	HIERARCH MP_DETECTED =       5
	Bit 5 has 37032 pixels set
	'''

    print('Mask header:', maskhdr)
    maskplanes = {}
    print('Mask planes:')
    for card in maskhdr.ascardlist():
        if not card.key.startswith('MP_'):
            continue
        print(card.value, card.key)
        maskplanes[card.key[3:]] = card.value

    print('Variance range:', var.min(), var.max())

    print('Image median:', np.median(img.ravel()))

    invvar = 1. / var
    invvar[var == 0] = 0.
    invvar[var < 0] = 0.

    sig = np.sqrt(np.median(var))
    H, W = img.shape
    for k, v in maskplanes.items():
        plt.clf()

        I = ((mask & (1 << v)) != 0)
        rgb = np.zeros((H, W, 3))
        clipimg = np.clip((img - (-3. * sig)) / (13. * sig), 0, 1)
        cimg = clipimg.copy()
        cimg[I] = 1
        rgb[:, :, 0] = cimg
        cimg = clipimg.copy()
        cimg[I] = 0
        rgb[:, :, 1] = cimg
        rgb[:, :, 2] = cimg
        plt.imshow(rgb, interpolation='nearest', origin='lower')
        plt.title(k)
        plt.savefig('mask-%s.png' % k.lower())

    badmask = sum([(1 << maskplanes[k])
                   for k in ['BAD', 'SAT', 'INTRP', 'CR']])
    # HACK -- left EDGE sucks
    badmask += (1 << maskplanes['EDGE'])
    #badmask = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3)
    #badmask |= (1 << 4)
    print('Masking out: 0x%x' % badmask)
    invvar[(mask & badmask) != 0] = 0.

    assert (all(np.isfinite(img.ravel())))
    assert (all(np.isfinite(invvar.ravel())))

    psf = pyfits.open(psffn)[0].data
    print('psf', psf.shape)
    psf /= psf.sum()

    from tractor.emfit import em_fit_2d
    from tractor.fitpsf import em_init_params

    # Create Gaussian mixture model PSF approximation.
    S = psf.shape[0]
    # number of Gaussian components
    K = 3
    w, mu, sig = em_init_params(K, None, None, None)
    II = psf.copy()
    II /= II.sum()
    # HIDEOUS HACK
    II = np.maximum(II, 0)
    print('Multi-Gaussian PSF fit...')
    xm, ym = -(S / 2), -(S / 2)
    em_fit_2d(II, xm, ym, w, mu, sig)
    print('w,mu,sig', w, mu, sig)
    mypsf = tractor.GaussianMixturePSF(w, mu, sig)

    P = mypsf.getPointSourcePatch(S / 2, S / 2)
    mn, mx = psf.min(), psf.max()
    ima = dict(interpolation='nearest', origin='lower', vmin=mn, vmax=mx)
    plt.clf()
    plt.subplot(1, 2, 1)
    plt.imshow(psf, **ima)
    plt.subplot(1, 2, 2)
    pimg = np.zeros_like(psf)
    P.addTo(pimg)
    plt.imshow(pimg, **ima)
    plt.savefig('psf.png')

    sig = np.sqrt(np.median(var))

    plt.clf()
    plt.hist(img.ravel(), 100, range=(-3. * sig, 3. * sig))
    plt.savefig('imghist.png')

    srcs = fits_table(srcfn)
    print('Initial:', len(srcs), 'sources')
    # Trim sources with x=0 or y=0
    srcs = srcs[(srcs.x != 0) * (srcs.y != 0)]
    print('Trim on x,y:', len(srcs), 'sources left')
    # Zero out nans & infs
    for c in ['theta', 'a', 'b']:
        I = np.logical_not(np.isfinite(srcs.get(c)))
        srcs.get(c)[I] = 0.
    # Set sources with flux=NaN to something more sensible...
    I = np.logical_not(np.isfinite(srcs.flux))
    srcs.flux[I] = 1.
    # Sort sources by flux.
    srcs = srcs[np.argsort(-srcs.flux)]

    # Trim sources that are way outside the image.
    margin = 8. * np.maximum(srcs.a, srcs.b)
    H, W = img.shape
    srcs = srcs[(srcs.x > -margin) * (srcs.y > -margin) *
                (srcs.x < (W + margin) * (srcs.y < (H + margin)))]
    print('Trim out-of-bounds:', len(srcs), 'sources left')

    wcs = tractor.FitsWcs(Sip(imgfn, 1))
    #wcs = tractor.NullWCS()

    timg = tractor.Image(data=img,
                         invvar=invvar,
                         psf=mypsf,
                         wcs=wcs,
                         sky=tractor.ConstantSky(0.),
                         photocal=tractor.NullPhotoCal(),
                         name='image')

    inverr = timg.getInvError()
    assert (all(np.isfinite(inverr.ravel())))

    tsrcs = []
    for s in srcs:
        #pos = tractor.PixPos(s.x, s.y)
        pos = tractor.RaDecPos(s.ra, s.dec)
        if s.a > 0 and s.b > 0:
            eflux = tractor.Flux(s.flux / 2.)
            dflux = tractor.Flux(s.flux / 2.)
            re, ab, phi = s.a, s.b / s.a, 90. - s.theta
            eshape = gal.GalaxyShape(re, ab, phi)
            dshape = gal.GalaxyShape(re, ab, phi)
            print('Fluxes', eflux, dflux)
            tsrc = gal.CompositeGalaxy(pos, eflux, eshape, dflux, dshape)
        else:
            flux = tractor.Flux(s.flux)
            print('Flux', flux)
            tsrc = tractor.PointSource(pos, flux)
        tsrcs.append(tsrc)

    chug = tractor.Tractor([timg])
    for src in tsrcs:
        if chug.getModelPatch(timg, src) is None:
            print('Dropping non-overlapping source:', src)
            continue
        chug.addSource(src)
    print('Kept a total of', len(chug.catalog), 'sources')

    ima = dict(interpolation='nearest',
               origin='lower',
               vmin=-3. * sig,
               vmax=10. * sig)
    chia = dict(interpolation='nearest', origin='lower', vmin=-5., vmax=5.)

    plt.clf()
    plt.imshow(img, **ima)
    plt.colorbar()
    plt.savefig('img.png')

    plt.clf()
    plt.imshow(invvar, interpolation='nearest', origin='lower')
    plt.colorbar()
    plt.savefig('invvar.png')

    mod = chug.getModelImages()[0]
    plt.clf()
    plt.imshow(mod, **ima)
    plt.colorbar()
    plt.savefig('mod-0.png')

    chi = chug.getChiImage(0)
    plt.clf()
    plt.imshow(chi, **chia)
    plt.colorbar()
    plt.savefig('chi-0.png')

    for step in range(5):
        cat = chug.getCatalog()
        for src in cat:
            if chug.getModelPatch(timg, src) is None:
                print('Dropping non-overlapping source:', src)
                chug.removeSource(src)
        print('Kept a total of', len(chug.catalog), 'sources')

        #cat = chug.getCatalog()
        #for i,src in enumerate([]):
        #for i,src in enumerate(chug.getCatalog()):
        #for i in range(len(cat)):
        i = 0
        while i < len(cat):
            src = cat[i]

            #print 'Step', i
            #for j,s in enumerate(cat):
            #	x,y = timg.getWcs().positionToPixel(s, s.getPosition())
            #	print '  ',
            #	if j == i:
            #		print '*',
            #	print '(%6.1f, %6.1f)'%(x,y), s

            print('Optimizing source', i, 'of', len(cat))

            x, y = timg.getWcs().positionToPixel(src.getPosition(), src)
            print('(%6.1f, %6.1f)' % (x, y), src)
            # pre = src.getModelPatch(timg)

            s1 = str(src)
            print('src1 ', s1)
            dlnp1, X, a = chug.optimizeCatalogFluxes(srcs=[src])
            s2 = str(src)
            dlnp2, X, a = chug.optimizeCatalogAtFixedComplexityStep(srcs=[src],
                                                                    sky=False)
            s3 = str(src)

            #post = src.getModelPatch(timg)

            print('src1 ', s1)
            print('src2 ', s2)
            print('src3 ', s3)
            print('dlnp', dlnp1, dlnp2)

            if chug.getModelPatch(timg, src) is None:
                print('After optimizing, no overlap!')
                print('Removing source', src)
                chug.removeSource(src)
                i -= 1
            i += 1

            # plt.clf()
            # plt.subplot(2,2,1)
            # img = timg.getImage()
            # (x0,x1,y0,y1) = pre.getExtent()
            # plt.imshow(img, **ima)
            # ax = plt.axis()
            # plt.plot([x0,x0,x1,x1,x0], [y0,y1,y1,y0,y0], 'k-', lw=2)
            # plt.axis(ax)
            # plt.subplot(2,2,3)
            # plt.imshow(pre.getImage(), **ima)
            # plt.subplot(2,2,4)
            # plt.imshow(post.getImage(), **ima)
            # plt.savefig('prepost-s%i-s%03i.png' % (step, i))
            #
            # mod = chug.getModelImages()[0]
            # plt.clf()
            # plt.imshow(mod, **ima)
            # plt.colorbar()
            # plt.savefig('mod-s%i-s%03i.png' % (step, i))
            # chi = chug.getChiImage(0)
            # plt.clf()
            # plt.imshow(chi, **chia)
            # plt.colorbar()
            # plt.savefig('chi-s%i-s%03i.png' % (step, i))

        #dlnp,x,a = chug.optimizeCatalogFluxes()
        #print 'fluxes: dlnp', dlnp
        #dlnp,x,a = chug.optimizeCatalogAtFixedComplexityStep()
        #print 'opt: dlnp', dlnp

        mod = chug.getModelImages()[0]
        plt.clf()
        plt.imshow(mod, **ima)
        plt.colorbar()
        plt.savefig('mod-%i.png' % (step + 1))

        chi = chug.getChiImage(0)
        plt.clf()
        plt.imshow(chi, **chia)
        plt.colorbar()
        plt.savefig('chi-%i.png' % (step + 1))

    return

    for step in range(5):
        chug.optimizeCatalogFluxes()
        mod = chug.getModelImages()[0]
        plt.clf()
        plt.imshow(mod, **ima)
        plt.colorbar()
        plt.savefig('mod-s%i.png' % step)

        chi = chug.getChiImage(0)
        plt.clf()
        plt.imshow(chi, **chia)
        plt.colorbar()
        plt.savefig('chi-s%i.png' % step)
Example #4
0
def read_cfht_coadd(imgfn, weightfn, roi=None, radecroi=None, filtermap=None):
    '''
    Given filenames for CFHT coadd image and weight files, produce
    a tractor.Image object.

    *roi*: (x0,x1, y0,y1): a region-of-interest in pixel space;
           returns the subimage [x0,x1), [y0,y1).
    *radecroi*: (ra0, ra1, dec0, dec1): a region-of-interest in RA,Dec space;
           returns the subimage bounding the given RA,Dec box [ra0,ra1], [dec0,dec1].
    *filtermap*: dict, eg,  { 'i.MP9701': 'i' }, to map from the FILTER header keyword to
           a standard filter name.
    '''

    P = pyfits.open(imgfn)
    print 'Read', P[0].data.shape, 'image'
    img = P[0].data
    imgheader = P[0].header

    # WCS: the image file has a WCS header
    # we should be able to do:
    #twcs = tractor.FitsWcs(imgfn)
    # ARGH!  Memory issues reading the file; HACK: copy header...
    f, tempfn = tempfile.mkstemp()
    os.close(f)
    pyfits.writeto(tempfn, None, header=imgheader, clobber=True)
    twcs = tractor.FitsWcs(tempfn)

    # Cut down to the region-of-interest, if given.
    if roi is not None:
        x0, x1, y0, y1 = roi
    elif radecroi is not None:
        ralo, rahi, declo, dechi = radecroi
        xy = [
            twcs.positionToPixel(tractor.RaDecPos(r, d))
            for r, d in [(ralo, declo), (ralo, dechi), (rahi,
                                                        declo), (rahi, dechi)]
        ]
        xy = np.array(xy)
        x0, x1 = xy[:, 0].min(), xy[:, 0].max()
        y0, y1 = xy[:, 1].min(), xy[:, 1].max()
        print 'RA,Dec ROI', ralo, rahi, declo, dechi, 'becomes x,y ROI', x0, x1, y0, y1

        # Clip to image size...
        H, W = data.shape
        x0 = max(0, min(x0, W - 1))
        x1 = max(0, min(x1, W))
        y0 = max(0, min(y0, H - 1))
        y1 = max(0, min(y1, H))
        print ' clipped to', x0, x1, y0, y1

    else:
        H, W = img.shape
        x0, x1, y0, y1 = 0, W, 0, H

    if roi is not None or radecroi is not None:
        # Actually cut the pixels
        img = img[y0:y1, x0:x1].copy()
        # Also tell the WCS to apply an offset.
        twcs.setX0Y0(x0, y0)

    print 'Image:', img.shape

    # HACK, tell the WCS how big the image is...
    # (needed because of the previous HACK, copying the header)
    twcs.wcs.set_imagesize(x1 - x0, y1 - y0)
    print twcs

    # Argh, this doesn't work: the files are .fz compressed
    #P = pyfits.open(weightfn)
    #weight = P[1].data[y0:y1, x0:x1]
    # HACK: use "imcopy" to uncompress to a temp file!
    #print 'Writing to temp file', tempfn
    cmd = "imcopy '%s[%i:%i,%i:%i]' '!%s'" % (weightfn, x0 + 1, x1, y0 + 1, y1,
                                              tempfn)
    print 'running', cmd
    os.system(cmd)
    P = pyfits.open(tempfn)
    weight = P[0].data
    print 'Read', weight.shape, 'weight image'

    # PSF model: FAKE IT for now
    tpsf = tractor.GaussianMixturePSF(np.array([0.9, 0.1]), np.zeros((2, 2)),
                                      np.array([1, 2]))

    # SKY level: assume zero
    #sky = np.median(img)
    #print 'Image median value:', sky
    sky = 0.
    tsky = tractor.ConstantSky(sky)

    # Photometric calibration: the FITS header says:
    '''
    FILTER  = 'r.MP9601'           / Filter
    PHOTZP  =               30.000 / photometric zeropoint
    COMMENT AB magnitude = -2.5 * log10(flux) + PHOTZP
    COMMENT r.MP9601=r_SDSS-0.024*(g_SDSS-r_SDSS)
    '''
    # Grab the filter name, and apply the filtermap (if given)
    filter = imgheader['FILTER']
    if filtermap:
        filter = filtermap.get(filter, filter)
    zp = imgheader['PHOTZP']
    # Simple photocal object
    photocal = tractor.MagsPhotoCal(filter, zp)

    # For plotting: find the approximate standard deviation
    #print 'Median weight:', np.median(weight)
    sigma1 = 1. / np.sqrt(np.median(weight))
    zr = np.array([-3, 10]) * sigma1 + sky

    name = 'CFHT ' + imgheader.get('OBJECT', '')

    tim = tractor.Image(data=img,
                        invvar=weight,
                        psf=tpsf,
                        wcs=twcs,
                        sky=tsky,
                        photocal=photocal,
                        name=name,
                        zr=zr)
    tim.extent = [x0, x1, y0, y1]
    return tim