def test_set_pivots_4h(pair, timeframe, id, start, type, SR, SL, TP, entry, pllen, settings_obj, clean_tmp): """ Check that self.pivots class attribute is correctly set using a H4 timeframe """ settings_obj.set('pivots', 'th_bounces', '0.01') t = Trade(id=id, start=start, pair=pair, timeframe=timeframe, type=type, SR=SR, SL=SL, TP=TP, entry=entry, strat='counter_b1', settings=settings_obj) c = Counter(trade=t, settings=settings_obj) c.set_pivots() assert len(c.pivots.plist) == pllen
def test_set_pivots_lasttime(pair, id, start, type, SR, SL, TP, entry, dates, clean_tmp): """ Check that self.pivots_lasttime class attribute has been initialized """ t = Trade(id=id, start=start, pair=pair, timeframe='D', type=type, SR=SR, SL=SL, TP=TP, entry=entry, strat='counter_b1', settingf="../../data/settings.ini") c = Counter(trade=t, period=1000, settingf='../../data/settings.ini') c.set_lasttime() c.set_pivots() c.set_pivots_lasttime() times = [] for p in c.pivots_lasttime.plist: times.append(p.candle.time) assert dates == times
def fetch_tradelist(self): ''' This function will produce a TradeList object using self.url Returns ------- TradeList ''' trade_list = [] for index, row in self.df.iterrows(): pair = row['id'].split(" ")[0] args = { 'pair': pair, 'settingf': self.settingf } for c in row.keys(): args[c] = row[c] t = Trade(**args) trade_list.append(t) tl = TradeList(settingf=self.settingf, tlist=trade_list, ser_data_obj=self.ser_data_obj) return tl
def test_run_trade_4hrs(pair, start, type, SL, TP, entry, outcome): ''' This test checks the run_trade method with the 'expires' parameter ''' td = Trade(start=start, entry=entry, SL=SL, TP=TP, pair=pair, type=type, timeframe="H4", strat="counter_b2", id="test", settingf="../../data/settings.ini") td.run_trade() assert td.outcome == outcome
def test_run_trade_wexpire(pair, start, type, SL, TP, entry, entered): ''' This test checks the run_trade method with the 'expires' parameter ''' td = Trade(start=start, entry=entry, SL=SL, TP=TP, pair=pair, type=type, timeframe="D", strat="counter_b2", id="test", settingf="../../data/settings.ini") td.run_trade(expires=2) assert td.entered == entered
def test_run_trade(pair, start, type, SL, TP, entry, outcome): ''' This test checks the progression of the Trade and checks if the outcome attribute is correctly defined. ''' td = Trade(start=start, entry=entry, SL=SL, TP=TP, pair=pair, type=type, timeframe="D", strat="counter_b2", id="test", settingf="../../data/settings.ini") td.run_trade() assert td.outcome == outcome
def t_object(): '''Returns a Trade object''' td = Trade(start="2017-04-20 14:00:00", end="2017-04-26 14:00:00", entry=0.75308, TP=0.7594, SL=0.74889, pair="AUD/USD", type="long", timeframe="H8", strat="counter_b2", id="AUD_USD 20APR2017H8", settingf="../../data/settings.ini") return td
def ct_object(): '''Returns Counter object''' t = Trade(id='EUR_GBP_13AUG2019D', start='2019-08-12 22:00:00', pair='EUR_GBP', timeframe='D', type='short', SR=0.92909, SL=0.93298, TP=0.90366, strat='counter_b1', settingf="../../data/settings.ini") c = Counter(trade=t, settingf='../../data/settings.ini') return c
def test_t_object_noTP(): '''Test the instantiation without TP and defined RR''' td = Trade(start="2017-04-20 14:00:00", end="2017-04-26 14:00:00", entry=0.75308, SL=0.74889, RR=1.5, pair="AUD/USD", type="long", timeframe="H8", strat="counter_b2", id="AUD_USD 20APR2017H8", settingf="../../data/settings.ini") # check that td.TP has been calculated assert td.TP == 0.7594
def test_max_min_rsi(pair, timeframe, id, start, type, SR, SL, TP, entry, avalue): t = Trade(id=id, start=start, pair=pair, timeframe=timeframe, type=type, SR=SR, SL=SL, TP=TP, entry=entry, strat='counter_b1', settingf="../../data/settings.ini") c = Counter(trade=t, settingf='../../data/settings.ini') assert avalue == c.max_min_rsi()
def test_is_entry_onrsi(pair, id, timeframe, start, type, SR, SL, TP, entry, entry_onrsi, clean_tmp): t = Trade(id=id, start=start, pair=pair, timeframe=timeframe, type=type, SR=SR, SL=SL, TP=TP, entry=entry, strat='counter_b1', settingf="../../data/settings.ini") c = Counter(trade=t, settingf='../../data/settings.ini', init_feats=True) assert entry_onrsi == c.is_entry_onrsi()
def test_set_pips_c_trend(pair, id, timeframe, start, type, SR, SL, TP, entry, pips_c_trend, clean_tmp): t = Trade(id=id, start=start, pair=pair, timeframe=timeframe, type=type, SR=SR, SL=SL, TP=TP, entry=entry, strat='counter_b1', settingf="../../data/settings.ini") c = Counter(trade=t, settingf='../../data/settings.ini', init_feats=True) assert pips_c_trend == c.pips_c_trend
def prepare_trade(self, type, SL, ic, harea_sel, delta): ''' Prepare a Trade object and check if it is taken Parameters ---------- type : str, Type of trade. 'short' or 'long' SL : float, Adjusted (by '__get_trade_type') SL price ic : Candle object Indecision candle for this trade harea_sel : HArea of this trade delta : Timedelta object corresponding to the time that needs to be increased Returns ------- Trade object ''' startO = ic.time + delta if type == 'short': # entry price will be the low of IC entry_p = getattr( ic, "low{0}".format(self.settings.get('general', 'bit'))) elif type == 'long': # entry price will be the high of IC entry_p = getattr( ic, "high{0}".format(self.settings.get('general', 'bit'))) startO = ic.time + delta t = Trade(id='{0}.bot'.format(self.pair), start=startO.strftime('%Y-%m-%d %H:%M:%S'), pair=self.pair, timeframe=self.timeframe, type=type, entry=entry_p, SR=harea_sel.price, SL=SL, RR=self.settings.getfloat('trade_bot', 'RR'), strat='counter', settingf=self.settingf, settings=self.settings) return t
def test_set_trend_i(pair, id, timeframe, start, type, SR, SL, TP, entry, trend_i, clean_tmp): t = Trade(id=id, start=start, pair=pair, timeframe=timeframe, type=type, SR=SR, SL=SL, TP=TP, entry=entry, strat='counter_b1', settingf="../../data/settings.ini") c = Counter(trade=t, settingf='../../data/settings.ini') c.set_trend_i() assert trend_i == c.trend_i
def test_ctobject_notype(start, SR, SL, TP, entry, clean_tmp): """ Check that Counter object without a type defined is correctly instantiated """ t = Trade(id='test', start=start, pair='EUR_AUD', timeframe='D', SR=SR, SL=SL, TP=TP, entry=entry, strat='counter_b1', settingf="../../data/settings.ini") c = Counter(trade=t, period=1000, settingf='../../data/settings.ini') assert 0
def test_set_lasttime(start, type, SR, SL, TP, entry, lasttime, clean_tmp): """ Check that self.lasttime class attribute has been initialized """ t = Trade(id='test', start=start, pair='EUR_AUD', timeframe='D', type=type, SR=SR, SL=SL, TP=TP, entry=entry, strat='counter_b1', settingf="../../data/settings.ini") c = Counter(trade=t, period=1000, settingf='../../data/settings.ini') c.set_lasttime() assert c.lasttime == lasttime
def calc_SR(self, adateObj): ''' Function to calculate S/R lines Parameters ---------- datetime object used for identifying S/R areas Return ------ HAreaList object ''' # calculate price range for calculating S/R ul, ll = self.get_max_min(adateObj) tb_logger.info("Running calc_SR for estimated range: {0}-{1}".format( ll, ul)) prices = [] bounces = [] # contains the number of pivots per price level score_per_bounce = [] tot_score = [] # the increment of price in number of pips is double the hr_extension prev_p = None p = float(ll) while p <= float(ul): tb_logger.debug("Processing S/R at {0}".format(round(p, 4))) # each of 'p' will become a S/R that will be tested for bounces # set entry to price+self.settings.getint('trade_bot','i_pips') entry = add_pips2price(self.pair, p, self.settings.getint('trade_bot', 'i_pips')) # set S/L to price-self.settings.getint('trade_bot','i_pips') SL = substract_pips2price( self.pair, p, self.settings.getint('trade_bot', 'i_pips')) t = Trade(id='{0}.{1}.detect_sr.{2}'.format( self.pair, adateObj.isoformat(), round(p, 5)), start=adateObj.strftime('%Y-%m-%d %H:%M:%S'), pair=self.pair, timeframe=self.timeframe, type='short', entry=entry, SR=p, SL=SL, RR=1.5, strat='counter_b1', settingf=self.settingf, settings=self.settings) # reduce period that Counter uses so the S/R # are calculated with the most recent pivots newperiod = self.settings.get('trade_bot', 'period_range') self.settings.set('counter', 'period', newperiod) c = Counter(trade=t, init_feats=True, settings=self.settings) if len(c.pivots.plist) == 0: mean_pivot = 0 else: mean_pivot = round(c.score_pivot, 2) prices.append(round(p, 5)) bounces.append(len(c.pivots.plist)) tot_score.append(c.total_score) score_per_bounce.append(mean_pivot) # increment price to following price. # Because the increment is made in pips # it does not suffer of the JPY pairs # issue p = add_pips2price(self.pair, p, 2 * self.settings.getint('trade_bot', 'i_pips')) if prev_p is None: prev_p = p else: increment_price = round(p - prev_p, 5) prev_p = p data = { 'price': prices, 'bounces': bounces, 'scores': score_per_bounce, 'tot_score': tot_score } df = pd.DataFrame(data=data) ### establishing bounces threshold as the args.th quantile # selecting only rows with at least one pivot and tot_score>0, # so threshold selection considers only these rows # and selection is not biased when range of prices is wide dfgt1 = df.loc[(df['bounces'] > 0)] dfgt2 = df.loc[(df['tot_score'] > 0)] bounce_th = dfgt1.bounces.quantile( self.settings.getfloat('trade_bot', 'th')) score_th = dfgt2.tot_score.quantile( self.settings.getfloat('trade_bot', 'th')) print("Selected number of pivot threshold: {0}".format(bounce_th)) print("Selected tot score threshold: {0}".format(score_th)) # selecting records over threshold dfsel = df.loc[(df['bounces'] > bounce_th) | (df['tot_score'] > score_th)] # repeat until no overlap between prices ret = self.__calc_diff(dfsel, increment_price) dfsel = ret[0] tog_seen = ret[1] while tog_seen is True: ret = self.__calc_diff(dfsel, increment_price) dfsel = ret[0] tog_seen = ret[1] # iterate over DF with selected SR to create a HAreaList halist = [] for index, row in dfsel.iterrows(): resist = HArea(price=row['price'], pips=self.settings.getint('pivots', 'hr_pips'), instrument=self.pair, granularity=self.timeframe, no_pivots=row['bounces'], tot_score=row['tot_score'], settingf=self.settingf, settings=self.settings) halist.append(resist) halist = HAreaList(halist=halist, settingf="data/settings.ini", settings=self.settings) tb_logger.info("Run done") return halist