Example #1
0
def inference(MODEL_NAME, dataset, params, net_params, model_path):

    if MODEL_NAME in ['GCN', 'GAT']:
        if net_params['self_loop']:
            print("[!] Adding graph self-loops for GCN/GAT models (central node trick).")
            dataset._add_self_loops()

    trainset, valset, testset = dataset.train, dataset.val, dataset.test
    device = net_params['device']
    model = gnn_model(MODEL_NAME, net_params)
    model = model.to(device)
    model.load_state_dict(torch.load(model_path))

    # batching exception for Diffpool
    drop_last = True if MODEL_NAME == 'DiffPool' else False

    train_loader = DataLoader(trainset, batch_size=params['batch_size'], shuffle=True, drop_last=drop_last, collate_fn=dataset.collate)
    val_loader = DataLoader(valset, batch_size=params['batch_size'], shuffle=False, drop_last=drop_last, collate_fn=dataset.collate)
    test_loader = DataLoader(testset, batch_size=params['batch_size'], shuffle=False, drop_last=drop_last, collate_fn=dataset.collate)

    _, train_acc = evaluate_network(model, device, train_loader)
    _, val_acc = evaluate_network(model, device, val_loader)
    _, test_acc = evaluate_network(model, device, test_loader)
    print("Train ACC: {:.4f}".format(train_acc))
    print("Val ACC: {:.4f}".format(val_acc))
    print("Test ACC: {:.4f}".format(test_acc))
Example #2
0
def test_pipeline(MODEL_NAME, dataset, device, verbose, out_dir):
    # Load models
    print('\n>> Loading models...')
    model_ls = load_model(out_dir, device=device, only_best=False, verbose=verbose,
                        filter=lambda df: df[df['model'] == MODEL_NAME][df['dataset'] == dataset.name])


    # Preparing dataset
    print('\n>> Preparing data...')
    if MODEL_NAME in ['GCN']:
        if model_ls[0]['net_params']['self_loop']:
            print("[!] Adding graph self-loops for GCN/GAT models (central node trick).")
            dataset._add_self_loops()
    if MODEL_NAME in ['SoGCN']:
        if model_ls[0]['net_params']['undirected']:
            print("[!] Converting directed graphs to undirected graphs for SoGCN model.")
            dataset._to_undirected()
    
    testset = dataset.test
    print("Test Graphs: ", len(testset))
    # Batching test data
    test_loader = DataLoader(testset, batch_size=model_ls[0]['net_params']['batch_size'], shuffle=False, drop_last=False, collate_fn=dataset.collate)


    # Test models
    print('\n>> Testing models...')
    acc_ls = []
    for i, item in enumerate(model_ls):
        model = item['model']
        net_params = item['net_params']

        # Set random seed
        set_random_seed(item['seed'], device)

        # Evaluate model
        _, test_acc = evaluate_network(model, device, test_loader, 0)
        acc_ls.append(test_acc)

        if verbose:
            print('\nModel #%s' % i)
            print('Test Accuracy: %s' % acc_ls[-1])

    print('\n')
    print('AVG Test Accuracy: %s, s.d.: %s' % (np.mean(acc_ls), np.std(acc_ls)))
def train_val_pipeline(MODEL_NAME, dataset, params, net_params, dirs):
    t0 = time.time()
    per_epoch_time = []

    DATASET_NAME = dataset.name

    if MODEL_NAME in ['GCN', 'GAT']:
        if net_params['self_loop']:
            print(
                "[!] Adding graph self-loops for GCN/GAT models (central node trick)."
            )
            dataset._add_self_loops()

    trainset, valset, testset = dataset.train, dataset.val, dataset.test

    root_log_dir, root_ckpt_dir, write_file_name, write_config_file = dirs
    device = net_params['device']

    # Write the network and optimization hyper-parameters in folder config/
    with open(write_config_file + '.txt', 'w') as f:
        f.write(
            """Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n\nTotal Parameters: {}\n\n"""
            .format(DATASET_NAME, MODEL_NAME, params, net_params,
                    net_params['total_param']))

    log_dir = os.path.join(root_log_dir, "RUN_" + str(0))
    writer = SummaryWriter(log_dir=log_dir)

    # setting seeds
    random.seed(params['seed'])
    np.random.seed(params['seed'])
    torch.manual_seed(params['seed'])
    if device == 'cuda':
        torch.cuda.manual_seed(params['seed'])

    print("Training Graphs: ", len(trainset))
    print("Validation Graphs: ", len(valset))
    print("Test Graphs: ", len(testset))
    print("Number of Classes: ", net_params['n_classes'])

    model = gnn_model(MODEL_NAME, net_params)
    model = model.to(device)

    optimizer = optim.Adam(model.parameters(),
                           lr=params['init_lr'],
                           weight_decay=params['weight_decay'])
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer,
        mode='min',
        factor=params['lr_reduce_factor'],
        patience=params['lr_schedule_patience'],
        verbose=True)

    epoch_train_losses, epoch_val_losses = [], []
    epoch_train_accs, epoch_val_accs = [], []

    # batching exception for Diffpool
    drop_last = True if MODEL_NAME == 'DiffPool' else False

    train_loader = DataLoader(trainset,
                              batch_size=params['batch_size'],
                              shuffle=True,
                              drop_last=drop_last,
                              collate_fn=dataset.collate)
    val_loader = DataLoader(valset,
                            batch_size=params['batch_size'],
                            shuffle=False,
                            drop_last=drop_last,
                            collate_fn=dataset.collate)
    test_loader = DataLoader(testset,
                             batch_size=params['batch_size'],
                             shuffle=False,
                             drop_last=drop_last,
                             collate_fn=dataset.collate)

    # At any point you can hit Ctrl + C to break out of training early.
    try:
        with tqdm(range(params['epochs'])) as t:
            for epoch in t:

                t.set_description('Epoch %d' % epoch)

                start = time.time()

                epoch_train_loss, epoch_train_acc, optimizer = train_epoch(
                    model, optimizer, device, train_loader, epoch)
                epoch_val_loss, epoch_val_acc = evaluate_network(
                    model, device, val_loader, epoch)

                epoch_train_losses.append(epoch_train_loss)
                epoch_val_losses.append(epoch_val_loss)
                epoch_train_accs.append(epoch_train_acc)
                epoch_val_accs.append(epoch_val_acc)

                writer.add_scalar('train/_loss', epoch_train_loss, epoch)
                writer.add_scalar('val/_loss', epoch_val_loss, epoch)
                writer.add_scalar('train/_acc', epoch_train_acc, epoch)
                writer.add_scalar('val/_acc', epoch_val_acc, epoch)
                writer.add_scalar('learning_rate',
                                  optimizer.param_groups[0]['lr'], epoch)

                _, epoch_test_acc = evaluate_network(model, device,
                                                     test_loader, epoch)
                t.set_postfix(time=time.time() - start,
                              lr=optimizer.param_groups[0]['lr'],
                              train_loss=epoch_train_loss,
                              val_loss=epoch_val_loss,
                              train_acc=epoch_train_acc,
                              val_acc=epoch_val_acc,
                              test_acc=epoch_test_acc)

                per_epoch_time.append(time.time() - start)

                # Saving checkpoint
                ckpt_dir = os.path.join(root_ckpt_dir, "RUN_")
                if not os.path.exists(ckpt_dir):
                    os.makedirs(ckpt_dir)
                torch.save(model.state_dict(),
                           '{}.pkl'.format(ckpt_dir + "/epoch_" + str(epoch)))

                files = glob.glob(ckpt_dir + '/*.pkl')
                for file in files:
                    epoch_nb = file.split('_')[-1]
                    epoch_nb = int(epoch_nb.split('.')[0])
                    if epoch_nb < epoch - 1:
                        os.remove(file)

                scheduler.step(epoch_val_loss)

                if optimizer.param_groups[0]['lr'] < params['min_lr']:
                    print("\n!! LR EQUAL TO MIN LR SET.")
                    break

                # Stop training after params['max_time'] hours
                if time.time() - t0 > params['max_time'] * 3600:
                    print('-' * 89)
                    print(
                        "Max_time for training elapsed {:.2f} hours, so stopping"
                        .format(params['max_time']))
                    break

    except KeyboardInterrupt:
        print('-' * 89)
        print('Exiting from training early because of KeyboardInterrupt')

    _, test_acc = evaluate_network(model, device, test_loader, epoch)
    _, train_acc = evaluate_network(model, device, train_loader, epoch)
    print("Test Accuracy: {:.4f}".format(test_acc))
    print("Train Accuracy: {:.4f}".format(train_acc))
    print("TOTAL TIME TAKEN: {:.4f}s".format(time.time() - t0))
    print("AVG TIME PER EPOCH: {:.4f}s".format(np.mean(per_epoch_time)))

    writer.close()
    """
        Write the results in out_dir/results folder
    """
    with open(write_file_name + '.txt', 'w') as f:
        f.write("""Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n{}\n\nTotal Parameters: {}\n\n
    FINAL RESULTS\nTEST ACCURACY: {:.4f}\nTRAIN ACCURACY: {:.4f}\n\n
    Total Time Taken: {:.4f} hrs\nAverage Time Per Epoch: {:.4f} s\n\n\n"""\
          .format(DATASET_NAME, MODEL_NAME, params, net_params, model, net_params['total_param'],
                  np.mean(np.array(test_acc))*100, np.mean(np.array(train_acc))*100, (time.time()-t0)/3600, np.mean(per_epoch_time)))

    # send results to gmail
    try:
        from gmail import send
        subject = 'Result for Dataset: {}, Model: {}'.format(
            DATASET_NAME, MODEL_NAME)
        body = """Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n{}\n\nTotal Parameters: {}\n\n
    FINAL RESULTS\nTEST ACCURACY: {:.4f}\nTRAIN ACCURACY: {:.4f}\n\n
    Total Time Taken: {:.4f} hrs\nAverage Time Per Epoch: {:.4f} s\n\n\n"""\
          .format(DATASET_NAME, MODEL_NAME, params, net_params, model, net_params['total_param'],
                  np.mean(np.array(test_acc))*100, np.mean(np.array(train_acc))*100, (time.time()-t0)/3600, np.mean(per_epoch_time))
        send(subject, body)
    except:
        pass
Example #4
0
def train_val_pipeline(dataset, params, net_params):
    t0 = time.time()
    per_epoch_time = []
    trainset, valset, testset = dataset.train, dataset.val, dataset.test
    device = net_params['device']

    # setting seeds
    random.seed(params['seed'])
    np.random.seed(params['seed'])
    torch.manual_seed(params['seed'])
    if device == 'cuda':
        torch.cuda.manual_seed(params['seed'])

    print("Training Graphs: ", len(trainset))
    print("Validation Graphs: ", len(valset))
    print("Test Graphs: ", len(testset))

    model = DGNNet(net_params)
    model = model.to(device)

    optimizer = optim.Adam(model.parameters(),
                           lr=params['init_lr'],
                           weight_decay=params['weight_decay'])
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer,
        mode='min',
        factor=params['lr_reduce_factor'],
        patience=params['lr_schedule_patience'])

    start_epoch = 0

    epoch_train_losses, epoch_val_losses = [], []
    epoch_train_accs, epoch_val_accs = [], []

    train_loader = DataLoader(trainset,
                              batch_size=params['batch_size'],
                              shuffle=True,
                              collate_fn=dataset.collate)
    val_loader = DataLoader(valset,
                            batch_size=params['batch_size'],
                            shuffle=False,
                            collate_fn=dataset.collate)
    test_loader = DataLoader(testset,
                             batch_size=params['batch_size'],
                             shuffle=False,
                             collate_fn=dataset.collate)

    # At any point you can hit Ctrl + C to break out of training early.
    try:
        with tqdm(range(start_epoch, params['epochs']),
                  mininterval=params['print_epoch_interval'],
                  maxinterval=None,
                  unit='epoch',
                  initial=start_epoch,
                  total=params['epochs']) as t:
            for epoch in t:

                t.set_description('Epoch %d' % epoch)

                start = time.time()

                epoch_train_loss, epoch_train_acc, optimizer = train_epoch(
                    model, optimizer, device, train_loader, epoch,
                    net_params['augmentation'], net_params['flip'],
                    net_params['distortion'])
                epoch_val_loss, epoch_val_acc = evaluate_network(
                    model, device, val_loader, epoch)

                epoch_train_losses.append(epoch_train_loss)
                epoch_val_losses.append(epoch_val_loss)
                epoch_train_accs.append(epoch_train_acc)
                epoch_val_accs.append(epoch_val_acc)

                _, epoch_test_acc = evaluate_network(model, device,
                                                     test_loader, epoch)
                t.set_postfix(time=time.time() - start,
                              lr=optimizer.param_groups[0]['lr'],
                              train_loss=epoch_train_loss,
                              val_loss=epoch_val_loss,
                              train_acc=epoch_train_acc,
                              val_acc=epoch_val_acc,
                              test_acc=epoch_test_acc)

                per_epoch_time.append(time.time() - start)

                scheduler.step(epoch_val_loss)

                if optimizer.param_groups[0]['lr'] < params['min_lr']:
                    print("\n!! LR EQUAL TO MIN LR SET.")
                    break

                # Stop training after params['max_time'] hours
                if time.time() - t0 > params['max_time'] * 3600:
                    print('-' * 89)
                    print(
                        "Max_time for training elapsed {:.2f} hours, so stopping"
                        .format(params['max_time']))
                    break

    except KeyboardInterrupt:
        print('-' * 89)
        print('Exiting from training early because of KeyboardInterrupt')

    _, test_acc = evaluate_network(model, device, test_loader, epoch)
    _, val_acc = evaluate_network(model, device, val_loader, epoch)
    _, train_acc = evaluate_network(model, device, train_loader, epoch)
    print("Test Accuracy: {:.4f}".format(test_acc))
    print("Val Accuracy: {:.4f}".format(val_acc))
    print("Train Accuracy: {:.4f}".format(train_acc))
    print("TOTAL TIME TAKEN: {:.4f}s".format(time.time() - t0))
    print("AVG TIME PER EPOCH: {:.4f}s".format(np.mean(per_epoch_time)))
Example #5
0
def train_val_pipeline(MODEL_NAME, dataset, params, net_params, args):

    load_model = args.load_model
    aug_type_list = [
        'drop_nodes', 'drop_add_edges', 'noise', 'mask', 'subgraph', 'new',
        'random', 'random2'
    ]
    DATASET_NAME = dataset.name

    if MODEL_NAME in ['GCN', 'GAT']:
        if net_params['self_loop']:
            print(
                "[!] Adding graph self-loops for GCN/GAT models (central node trick)."
            )
            dataset._add_self_loops()

    trainset, valset, testset = dataset.train, dataset.val, dataset.test
    device = net_params['device']

    # setting seeds
    random.seed(params['seed'])
    np.random.seed(params['seed'])
    torch.manual_seed(params['seed'])
    if device == 'cuda':
        torch.cuda.manual_seed(params['seed'])

    print('-' * 40 + "Finetune Option" + '-' * 40)
    print("Data  Name:     [{}]".format(DATASET_NAME))
    print("Model Name:     [{}]".format(MODEL_NAME))
    print("Training Graphs:[{}]".format(len(trainset)))
    print("Valid Graphs:   [{}]".format(len(valset)))
    print("Test Graphs:    [{}]".format(len(testset)))
    print("Number Classes: [{}]".format(net_params['n_classes']))
    print("Learning rate:  [{}]".format(params['init_lr']))
    print('-' * 40 + "Contrastive Option" + '-' * 40)
    print("Load model:     [{}]".format(load_model))
    print("Aug Type:       [{}]".format(aug_type_list[args.aug]))
    print("Projection head:[{}]".format(args.head))
    print('-' * 100)

    model = gnn_model(MODEL_NAME, net_params)
    if load_model:

        output_path = './001_contrastive_models'
        # output_path = './001_mask_models_03'
        save_model_dir0 = os.path.join(output_path, DATASET_NAME)
        save_model_dir1 = os.path.join(save_model_dir0,
                                       aug_type_list[args.aug])

        if args.head:
            save_model_dir1 += "_head"
        else:
            save_model_dir1 += "_no_head"
        save_model_dir2 = os.path.join(save_model_dir1, MODEL_NAME)
        load_file_name = glob.glob(save_model_dir2 + '/*.pkl')
        checkpoint = torch.load(load_file_name[-1])
        model_dict = model.state_dict()

        state_dict = {
            k: v
            for k, v in checkpoint.items() if k in model_dict.keys()
        }
        model.load_state_dict(state_dict)
        print('Success load pre-trained model!: [{}]'.format(
            load_file_name[-1]))
    else:
        print('No model load!: Test baseline! ')

    model = model.to(device)
    optimizer = optim.Adam(model.parameters(),
                           lr=params['init_lr'],
                           weight_decay=params['weight_decay'])
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer,
        mode='min',
        factor=params['lr_reduce_factor'],
        patience=params['lr_schedule_patience'],
        verbose=True)

    # batching exception for Diffpool
    drop_last = True if MODEL_NAME == 'DiffPool' else False

    train_loader = DataLoader(trainset,
                              batch_size=params['batch_size'],
                              shuffle=True,
                              drop_last=drop_last,
                              collate_fn=dataset.collate)
    val_loader = DataLoader(valset,
                            batch_size=params['batch_size'],
                            shuffle=False,
                            drop_last=drop_last,
                            collate_fn=dataset.collate)
    test_loader = DataLoader(testset,
                             batch_size=params['batch_size'],
                             shuffle=False,
                             drop_last=drop_last,
                             collate_fn=dataset.collate)

    for epoch in range(params['epochs']):

        epoch_train_loss, epoch_train_acc, optimizer = train_epoch(
            model, optimizer, device, train_loader, epoch)
        epoch_val_loss, epoch_val_acc = evaluate_network(
            model, device, val_loader, epoch)
        _, epoch_test_acc = evaluate_network(model, device, test_loader, epoch)
        print('-' * 80)
        print("Epoch [{}]  Test Acc: [{:.4f}]".format(epoch + 1,
                                                      epoch_test_acc))
        print('-' * 80)
        scheduler.step(epoch_val_loss)

        if optimizer.param_groups[0]['lr'] < params['min_lr']:
            print("\n!! LR EQUAL TO MIN LR SET.")
            break

    _, test_acc = evaluate_network(model, device, test_loader, epoch)
    _, train_acc = evaluate_network(model, device, train_loader, epoch)
    print("Test Accuracy: {:.4f}".format(test_acc))
    print("Train Accuracy: {:.4f}".format(train_acc))
Example #6
0
def train_val_pipeline(MODEL_NAME, dataset, params, net_params, dirs):
    t0 = time.time()
    per_epoch_time = []

    DATASET_NAME = dataset.name

    trainset, valset, testset = dataset.train, dataset.val, dataset.test

    root_log_dir, root_ckpt_dir, write_file_name, write_config_file = dirs
    device = net_params['device']

    # Write the network and optimization hyper-parameters in folder config/
    with open(write_config_file + '.txt', 'w') as f:
        f.write(
            """Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n\nTotal Parameters: {}\n\n"""
            .format(DATASET_NAME, MODEL_NAME, params, net_params,
                    net_params['total_param']))

    log_dir = os.path.join(root_log_dir, "RUN_" + str(0))
    writer = SummaryWriter(log_dir=log_dir)

    # setting seeds
    random.seed(params['seed'])
    np.random.seed(params['seed'])
    torch.manual_seed(params['seed'])
    if device == 'cuda':
        torch.cuda.manual_seed(params['seed'])

    if hydra.is_first_execution():
        print("Training Graphs: ", len(trainset))
        print("Validation Graphs: ", len(valset))
        print("Test Graphs: ", len(testset))

    model = EIGNet(net_params)
    model = model.to(device)

    optimizer = optim.Adam(model.parameters(),
                           lr=params['init_lr'],
                           weight_decay=params['weight_decay'])
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer,
        mode='min',
        factor=params['lr_reduce_factor'],
        patience=params['lr_schedule_patience'],
        verbose=True)

    if hydra.is_first_execution():
        start_epoch = 0
    else:
        print('not the first exec.')
        print(t0, 'old')
        t0 -= hydra.retrieved_checkpoint.time_elapsed
        print(t0, 'new')
        start_epoch = hydra.retrieved_checkpoint.last_epoch
        states = torch.load(hydra.retrieved_checkpoint.linked_files()[0])
        model.load_state_dict(states['model'])
        optimizer.load_state_dict(states['optimizer'])
        scheduler.load_state_dict(states['scheduler'])

    epoch_train_losses, epoch_val_losses = [], []
    epoch_train_accs, epoch_val_accs = [], []

    train_loader = DataLoader(trainset,
                              batch_size=params['batch_size'],
                              shuffle=True,
                              collate_fn=dataset.collate)
    val_loader = DataLoader(valset,
                            batch_size=params['batch_size'],
                            shuffle=False,
                            collate_fn=dataset.collate)
    test_loader = DataLoader(testset,
                             batch_size=params['batch_size'],
                             shuffle=False,
                             collate_fn=dataset.collate)

    last_hydra_checkpoint = t0
    # At any point you can hit Ctrl + C to break out of training early.
    try:
        with tqdm(range(start_epoch, params['epochs']),
                  mininterval=params['hydra_progress_bar_every'],
                  maxinterval=None,
                  unit='epoch',
                  initial=start_epoch,
                  total=params['epochs']) as t:
            for epoch in t:

                t.set_description('Epoch %d' % epoch)

                start = time.time()

                epoch_train_loss, epoch_train_acc, optimizer = train_epoch(
                    model, optimizer, device, train_loader, epoch,
                    net_params['augmentation'], net_params['flip'])
                epoch_val_loss, epoch_val_acc = evaluate_network(
                    model, device, val_loader, epoch)

                epoch_train_losses.append(epoch_train_loss)
                epoch_val_losses.append(epoch_val_loss)
                epoch_train_accs.append(epoch_train_acc)
                epoch_val_accs.append(epoch_val_acc)

                writer.add_scalar('train/_loss', epoch_train_loss, epoch)
                writer.add_scalar('val/_loss', epoch_val_loss, epoch)
                writer.add_scalar('train/_acc', epoch_train_acc, epoch)
                writer.add_scalar('val/_acc', epoch_val_acc, epoch)
                writer.add_scalar('learning_rate',
                                  optimizer.param_groups[0]['lr'], epoch)

                _, epoch_test_acc = evaluate_network(model, device,
                                                     test_loader, epoch)
                t.set_postfix(time=time.time() - start,
                              lr=optimizer.param_groups[0]['lr'],
                              train_loss=epoch_train_loss,
                              val_loss=epoch_val_loss,
                              train_acc=epoch_train_acc,
                              val_acc=epoch_val_acc,
                              test_acc=epoch_test_acc)

                per_epoch_time.append(time.time() - start)

                scheduler.step(epoch_val_loss)

                if optimizer.param_groups[0]['lr'] < params['min_lr']:
                    print("\n!! LR EQUAL TO MIN LR SET.")
                    break

                # Stop training after params['max_time'] hours
                if time.time() - t0 > params['max_time'] * 3600:
                    print('-' * 89)
                    print(
                        "Max_time for training elapsed {:.2f} hours, so stopping"
                        .format(params['max_time']))
                    break

                # Saving checkpoint
                if hydra.is_available() and (time.time(
                ) - last_hydra_checkpoint) > params['hydra_checkpoint_every']:
                    last_hydra_checkpoint = time.time()
                    ck_path = '/tmp/epoch_{}.pkl'.format(epoch + 1)
                    torch.save(
                        {
                            'model': model.state_dict(),
                            'optimizer': optimizer.state_dict(),
                            'scheduler': scheduler.state_dict()
                        }, ck_path)
                    ck = hydra.checkpoint()
                    ck.last_epoch = epoch + 1
                    ck.time_elapsed = time.time() - t0
                    # save best epoch
                    ck.link_file(ck_path)
                    ck.save_to_server()

                if hydra.is_available(
                ) and epoch % params['hydra_eta_every'] == 0:
                    hydra.set_eta(per_epoch_time[-1] *
                                  (params['epochs'] - epoch - 1))

    except KeyboardInterrupt:
        print('-' * 89)
        print('Exiting from training early because of KeyboardInterrupt')

    _, test_acc = evaluate_network(model, device, test_loader, epoch)
    _, val_acc = evaluate_network(model, device, val_loader, epoch)
    _, train_acc = evaluate_network(model, device, train_loader, epoch)
    print("Test Accuracy: {:.4f}".format(test_acc))
    print("Val Accuracy: {:.4f}".format(val_acc))
    print("Train Accuracy: {:.4f}".format(train_acc))
    print("TOTAL TIME TAKEN: {:.4f}s".format(time.time() - t0))
    print("AVG TIME PER EPOCH: {:.4f}s".format(np.mean(per_epoch_time)))

    writer.close()

    if hydra.is_available():
        hydra.save_output(
            {
                'loss': {
                    'train': epoch_train_losses,
                    'val': epoch_val_losses
                },
                'acc': {
                    'train': epoch_train_accs,
                    'val': epoch_val_accs
                }
            }, 'history')
        hydra.save_output(
            {
                'test_acc': test_acc,
                'train_acc': train_acc,
                'val_acc': val_acc,
                'total_time': time.time() - t0,
                'avg_epoch_time': np.mean(per_epoch_time)
            }, 'summary')
    """
        Write the results in out_dir/results folder
    """
    with open(write_file_name + '.txt', 'w') as f:
        f.write("""Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n{}\n\nTotal Parameters: {}\n\n
    FINAL RESULTS\nTEST ACCURACY: {:.4f}\nTRAIN ACCURACY: {:.4f}\n\n
    Total Time Taken: {:.4f} hrs\nAverage Time Per Epoch: {:.4f} s\n\n\n""" \
                .format(DATASET_NAME, MODEL_NAME, params, net_params, model, net_params['total_param'],
                        np.mean(np.array(test_acc)) * 100, np.mean(np.array(train_acc)) * 100,
                        (time.time() - t0) / 3600, np.mean(per_epoch_time)))