def score( result_folder, epoch=None, use_cpu=False): """Test a network on the dataset.""" if use_cpu: bnet.set_mode_cpu() else: bnet.set_mode_gpu() _LOGGER.info("Loading data...") tr_data, _ = training_data() te_data, te_labels = test_data() from data import _MEAN _LOGGER.info("Loading network...") # Load the model. model, _, _, _ = _model(result_folder, tr_data.shape[0], epoch=epoch, no_solver=True) _LOGGER.info("Predicting...") results = model.predict(te_data, test_callbacks=[ RandCropMonitor('data', _MEAN), mnt.ProgressIndicator() ], out_blob_names=['score']) _LOGGER.info("Accuracy: %f.", accuracy_score(te_labels, np.argmax(np.array(results), axis=1)))
def test_image( result_folder, epoch=None, image_idx=0, use_cpu=False): """Test a network on one test image.""" if use_cpu: bnet.set_mode_cpu() else: bnet.set_mode_gpu() _LOGGER.info("Loading data...") tr_data, _ = training_data() te_data, _ = test_data() from data import _MEAN _LOGGER.info("Loading network...") # Load the model for training. model, _, _, _ = _model(result_folder, tr_data.shape[0], epoch=epoch) _LOGGER.info("Predicting...") results = model.predict(te_data[:image_idx + 1], test_callbacks=[ RandCropMonitor('data', _MEAN), mnt.ProgressIndicator() ], out_blob_names=['score']) _LOGGER.info("Prediction for image %d: %s.", image_idx, str(results[image_idx]))
def test_image(result_folder, epoch=None, image_idx=0, use_cpu=False): """Test a network on one test image.""" if use_cpu: bnet.set_mode_cpu() else: bnet.set_mode_gpu() _LOGGER.info("Loading data...") tr_data, _ = training_data() te_data, _ = test_data() _LOGGER.info("Loading network...") # Load the model for training. model, _, _, _ = _model(result_folder, tr_data.shape[0], epoch=epoch) _LOGGER.info("Predicting...") results = model.predict(te_data, test_callbacks=[mnt.ProgressIndicator()]) _LOGGER.info("Prediction for image %d: %s.", image_idx, str(results[image_idx]))
def test_image( result_folder, epoch=None, image_idx=0, use_cpu=False): """Test a network on one test image.""" if use_cpu: bnet.set_mode_cpu() else: bnet.set_mode_gpu() _LOGGER.info("Loading data...") tr_data, _ = training_data() te_data, _ = test_data() _LOGGER.info("Loading network...") # Load the model for training. model, _, _, _ = _model(result_folder, tr_data.shape[0], epoch=epoch) _LOGGER.info("Predicting...") results = model.predict(te_data, test_callbacks=[mnt.ProgressIndicator()]) _LOGGER.info("Prediction for image %d: %s.", image_idx, str(results[image_idx]))