Example #1
0
def main():
    parser = get_argument_parser()
    parser.add_argument(
        "-s",
        "--split",
        type=str,
        default="test",
        choices={"train", "valid", "test"},
        required=False,
        help="which data to use",
    )
    parser.add_argument(
        "-o",
        "--output-path",
        type=str,
        required=True,
        help="where to store the predictions",
    )
    parser.add_argument(
        "--filelist-train",
        help=
        "name of filelist used for training (default, the same as `filelist`)",
    )
    parser.add_argument(
        "-e",
        "--embedding",
        # choices={"mean", None},
        help="what embedding to use",
    )

    args = parser.parse_args()
    args.filelist_train = args.filelist_train or args.filelist
    predict(args)
Example #2
0
def main():
    parser = get_argument_parser()
    args = parser.parse_args()
    args.batch_size = BATCH_SIZE
    args.max_epochs = MAX_EPOCHS
    trial = SimpleNamespace(**{
        "parameters": {
            "lr": 5e-4,
        },
    })
    print(args)
    print(trial)
    train(args, trial)
Example #3
0
def main():
    parser = get_argument_parser()
    parser.add_argument(
        "-s",
        "--split",
        type=str,
        default="test",
        choices={"train", "valid", "test"},
        required=False,
        help="which data to use",
    )
    parser.add_argument(
        "-o",
        "--output-path",
        type=str,
        help="where to store the visual features",
    )
    args = parser.parse_args()
    print(args)
    extract_visual_features(args)
Example #4
0
def main():
    parser = get_argument_parser()

    args = parser.parse_args()
    args.batch_size = 8
    args.max_epochs = 64

    study = get_study()

    for i, trial in enumerate(study):
        print("trial id: {}".format(trial.id))
        pprint.pprint(trial.parameters)
        loss = train(args, trial, is_train=False, study=study)
        study.add_observation(trial=trial, objective=loss)
        study.finalize(trial)
        print()

    print(study.get_best_result())

    # save study
    model_name = f"{DATASET}_{args.filelist}_{args.model_type}"
    path = os.path.join("output/models/sherpa", model_name)
    os.makedirs(path, exist_ok=True)
    study.save(path)
Example #5
0
        initialize([hidden_to_output])
        linear_output_e1 = hidden_to_output.apply(before_out_e1)
        linear_output_e2 = hidden_to_output.apply(before_out_e2)
        linear_output_e1.name = 'linear_output_e1'
        linear_output_e2.name = 'linear_output_e2'

        y_hat_e1 = Logistic(name='logistic1').apply(linear_output_e1)
        y_hat_e2 = Logistic(name='logistic2').apply(linear_output_e2)
        y_hat_e1.name = 'y_hat_e1'
        y_hat_e2.name = 'y_hat_e2'
        y_hat_e1 = debug_print(y_hat_e1, 'y_1', DEBUG)
        return y_hat_e1, y_hat_e2, before_out_e1, before_out_e2


if __name__ == '__main__':
    parser = get_argument_parser()
    args = parser.parse_args()
    logger.info('args: %s', args)
    if not args.config and (not args.samples or not args.embeddings):
        print(
            "Please provide either a config file (--config) or the paths "
            "to the samples and embeddings files. "
            "(--samples, --embeddings).")
        sys.exit(1)
    trainer = JointUnaryBinaryOldEntityTyping.from_config(args.config)
    trainer._config[
        'hidden_units'] = args.hidden_units if args.hidden_units else trainer._config[
            'hidden_units']
    if args.max_len:
        trainer._config['max_len'] = args.max_len
    if args.apply: