Example #1
0
def experiment1():
    """
    Train a classifier and run it on a video using default settings
    without saving any files to disk.
    """

    # Extract HOG features from images in the sample directories and return
    # results and parameters in a dict.
    feature_data = processFiles(pos_dir, neg_dir, recurse=True,
        hog_features=True)

    # Train SVM and return the classifier and parameters in a dict.
    # This function takes the dict from processFiles() as an input arg.
    classifier_data = trainSVM(feature_data=feature_data, output_file=True,output_filename='svm_1')
	

	##TODO: If you have trained your classifier and prepare to detect the video, 
	##      uncomment the code below.
	
    # Instantiate a Detector object and load the dict from trainSVM().
    detector = Detector().loadClassifier(classifier_data=classifier_data)

    # Open a VideoCapture object for the video file.
    cap = cv2.VideoCapture(video_file)

    # Start the detector by supplying it with the VideoCapture object.
    # At this point, the video will be displayed, with bounding boxes
    # drawn around detected objects per the method detailed in README.md.
    detector.detectVideo(video_capture=cap)
Example #2
0
def experiment3():
    feature_data = processFiles(pos_dir, neg_dir, recurse=True,
                                hog_features=True)

    # Train SVM and return the classifier and parameters in a dict.
    # This function takes the dict from processFiles() as an input arg.
    classifier_data = trainSVM(feature_data=feature_data, output_file=True, output_filename='svm_1')
    detector = Detector(init_size=(128, 128), x_overlap=0.8, y_step=0.01, x_range=(0.4, 1),
                        y_range=(0.5, 0.8), scale=0.6).loadClassifier(filepath='svm_1')
    cap = cv2.VideoCapture(video_file)
    detector.detectVideo(video_capture=cap, write=True, num_frames=4, threshold=45)
Example #3
0
def example2():
    """
    Extract features from sample images and save to pickle file.
    Load sample data to train classifier, then save classifier to pickle file.
    Run the classifier on a video by loading the classifier file, and write
    the resulting detection video to an avi file.
    """

    # Extract HOG features, color histogram features, and spatial features
    # from sample images, then save the data to a pickle file. Note that if an
    # output filepath isn't specified, a default timestamped filename will
    # be generated.
    feature_data_filename = "feature_data.pkl"
    processFiles(pos_dir,
                 neg_dir,
                 recurse=True,
                 hog_features=True,
                 hist_features=True,
                 spatial_features=True,
                 output_file=True,
                 output_filename=feature_data_filename)

    # Load the pickle file produced by processFiles(), train the classifier,
    # then save the classifier data to a pickle file.
    classifier_data_filename = "classifier_data.pkl"
    trainSVM(filepath=feature_data_filename,
             output_file=True,
             output_filename=classifier_data_filename)

    # Instantiate a detector and load the classifier pickle file.
    detector = Detector().loadClassifier(filepath=classifier_data_filename)

    # Open a VideoCapture object for the video file.
    cap = cv2.VideoCapture(video_file)

    # Run the detector and save the resulting video to an avi file.
    detector.detectVideo(video_capture=cap, write=True)
Example #4
0
def example3():
    """
    Extract features, train the classifier, run the detector using a
    variety of custom parameters.
    """

    # Extract features. Do not save to disk.
    feature_data = processFiles(pos_dir,
                                neg_dir,
                                recurse=True,
                                color_space="yuv",
                                channels=[0, 2],
                                hog_features=True,
                                hist_features=False,
                                spatial_features=True,
                                hog_lib="sk",
                                size=(128, 64),
                                hog_bins=11,
                                pix_per_cell=(16, 8),
                                cells_per_block=(2, 2),
                                block_norm="L2",
                                transform_sqrt=False,
                                spatial_size=(64, 32))

    # Train a classifier and save it to disk, then use the returned dict
    # to instantiate and run a detector.
    classifier_data = trainSVM(feature_data=feature_data,
                               loss="squared_hinge",
                               penalty="l2",
                               dual=False,
                               fit_intercept=False,
                               output_file=True,
                               output_filename="example_classifier.pkl")

    detector = Detector(init_size=(128, 64),
                        x_overlap=0.75,
                        y_step=0.02,
                        x_range=(0.2, 0.85),
                        y_range=(0.4, 0.9),
                        scale=1.8)

    detector.loadClassifier(classifier_data=classifier_data)

    cap = cv2.VideoCapture(video_file)
    detector.detectVideo(video_capture=cap,
                         num_frames=5,
                         threshold=100,
                         min_bbox=(50, 50),
                         draw_heatmap=False)
Example #5
0
def example5():
    """
    Train a classifier and run on video using parameters that seemed to work
    well for vehicle detection.
    """

    feature_data = processFiles(pos_dir,
                                neg_dir,
                                recurse=True,
                                color_space="YCrCb",
                                channels=[0, 1, 2],
                                hog_features=True,
                                hist_features=True,
                                spatial_features=True,
                                hog_lib="cv",
                                size=(64, 64),
                                pix_per_cell=(8, 8),
                                cells_per_block=(2, 2),
                                hog_bins=20,
                                hist_bins=16,
                                spatial_size=(20, 20))

    classifier_data = trainSVM(feature_data=feature_data, C=1000)

    detector = Detector(init_size=(90, 90),
                        x_overlap=0.7,
                        y_step=0.01,
                        x_range=(0.02, 0.98),
                        y_range=(0.55, 0.89),
                        scale=1.3)
    detector.loadClassifier(classifier_data=classifier_data)

    cap = cv2.VideoCapture(video_file)
    detector.detectVideo(video_capture=cap,
                         num_frames=9,
                         threshold=120,
                         draw_heatmap_size=0.3)
Example #6
0
def hog_svm():
    feature_data = processFiles(positive, negative)
    classifier_data = trainSVM(feature_data=feature_data)
    det = detector().loadClassifier(classifier_data=classifier_data)
    cap = cv2.VideoCapture(video)
    det.detectVideo(cap)