def main(): ext = '.nii.gz' search_pattern = '*' dataset = 'test' # local main_dir = f'/home/anatielsantos/mestrado/datasets/dissertacao/{dataset}/image/lung_extracted/teste_clahe' model_path = '/home/anatielsantos/mestrado/models/dissertacao/unet/unet_exp1_200epc_best.h5' # remote # main_dir = f'/data/flavio/anatiel/datasets/dissertacao/{dataset}/image' # model_path = '/data/flavio/anatiel/models/dissertacao/unet_500epc_last.h5' src_dir = '{}'.format(main_dir) dst_dir = '{}/UnetExp1PredsBest'.format(main_dir) nproc = mp.cpu_count() print('Num Processadores = ' + str(nproc)) model = unet() model.load_weights(model_path) execExecPredictByUnet(src_dir, dst_dir, ext, search_pattern, model, reverse=False, desc=project_name, parallel=False)
from io import BytesIO import skimage.io as io from tensorflow.python.client import device_lib #print(device_lib.list_local_devices()) import keras.backend.tensorflow_backend as K from sklearn import metrics from keras.preprocessing.image import * from train import find_patches_from_slide, read_test_data_path, predict_from_model, simple_model, unet print( '****************************INFERENCE FILE*******************************' ) #model = simple_model(pretrained_weights ='/data/model/u_1.h5') model = unet(pretrained_weights='/data/model/unet555.h5') #model = unet(pretrained_weights ='u_1.h5') PATCH_SIZE = 256 NUM_CLASSES = 2 # not_tumor, tumor file_handles = [] def gen_imgs_test(slide_path, truth_path, samples, batch_size, patch_size=PATCH_SIZE, num_epoch=1, shuffle=True): """This function returns a generator that