def main(): args = train_common.parse_args() args.logs_dir = osp.join(here, 'logs') # Dataset. args.dataset = 'arc2017_real' train_data = instance_occlsegm_lib.datasets.apc.\ ARC2017InstanceSegmentationDataset(split='train', aug='standard') test_data = instance_occlsegm_lib.datasets.apc.\ ARC2017InstanceSegmentationDataset(split='test') args.class_names = tuple(test_data.class_names) # Model. args.min_size = 600 args.max_size = 1000 args.anchor_scales = (4, 8, 16, 32) # Run training!. train_common.train( args=args, train_data=train_data, test_data=test_data, evaluator_type='coco', )
def main(): args = train_common.parse_args() args.logs_dir = osp.join(here, 'logs') # Dataset. For demonstration with few images, we use same dataset # for both train and test. root_dir = osp.join( here, 'src/labelme/examples/instance_segmentation/data_dataset_voc', ) args.dataset = 'custom' # 1 epoch = 3 images -> 60 images train_data = [VOCLikeDataset(root_dir=root_dir)] * 20 train_data = chainer.datasets.ConcatenatedDataset(*train_data) test_data = VOCLikeDataset(root_dir=root_dir) args.class_names = tuple(VOCLikeDataset.class_names.tolist()) # Model. args.min_size = 600 args.max_size = 1000 args.anchor_scales = (4, 8, 16, 32) train_common.train( args=args, train_data=train_data, test_data=test_data, evaluator_type='voc', )
def main(): args = train_common.parse_args() args.logs_dir = osp.join(here, 'logs') # Dataset. args.dataset = 'coco' train_data = chainer.datasets.ConcatenatedDataset( cmr.datasets.COCOInstanceSegmentationDataset('train'), cmr.datasets.COCOInstanceSegmentationDataset('valminusminival'), ) test_data = cmr.datasets.COCOInstanceSegmentationDataset( 'minival', use_crowd=True, return_crowd=True, return_area=True, ) args.class_names = tuple(test_data.class_names.tolist()) # Model. args.min_size = 800 args.max_size = 1333 args.anchor_scales = (2, 4, 8, 16, 32) # Run training!. train_common.train( args=args, train_data=train_data, test_data=test_data, evaluator_type='coco', )
def main(): parser = train_common.get_parser() parser.add_argument( '--exclude-arc2017', action='store_true', help='Exclude ARC2017 objects from synthetic', ) parser.add_argument( '--background', choices=['tote', 'tote+shelf'], default='tote', help='background image in 2D synthesis', ) args = parser.parse_args() args.logs_dir = osp.join(here, 'logs') # Dataset. args.dataset = 'synthetic' train_data = \ grasp_fusion.datasets.SyntheticInstanceSegmentationDataset( augmentation=True, augmentation_level='all', exclude_arc2017=args.exclude_arc2017, background=args.background, ) test_data = \ grasp_fusion.datasets.RealInstanceSegmentationDataset() args.class_names = tuple(test_data.class_names.tolist()) # Model. args.min_size = 600 args.max_size = 1000 args.anchor_scales = (4, 8, 16, 32) # Run training!. train_common.train( args=args, train_data=train_data, test_data=test_data, evaluator_type='coco', )
def main(): args = train_common.parse_args() args.logs_dir = osp.join(here, 'logs') # Dataset. # args.dataset = 'coco' # train_data = chainer.datasets.ConcatenatedDataset( # cmr.datasets.COCOInstanceSegmentationDataset('train'), # cmr.datasets.COCOInstanceSegmentationDataset('valminusminival'), # ) # test_data = cmr.datasets.COCOInstanceSegmentationDataset( # 'minival', # use_crowd=True, # return_crowd=True, # return_area=True, # ) # args.class_names = tuple(test_data.class_names.tolist()) args.dataset = 'original' train_data = dataset.OomugiDataset() test_data = dataset.OomugiDataset(test=True) args.class_names = ['leaf'] # Model. args.min_size = 800 args.max_size = 1333 args.anchor_scales = (2, 4, 8, 16, 32) args.ratios = (0.11, 0.14, 0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5, 7, 9) # Run training!. train_common.train( args=args, train_data=train_data, test_data=test_data, evaluator_type='coco', )
def main(): args = train_common.parse_args() args.logs_dir = osp.join(here, 'logs') # Dataset. args.dataset = 'voc' train_data = cmr.datasets.SBDInstanceSegmentationDataset('train') test_data = cmr.datasets.SBDInstanceSegmentationDataset('val') args.class_names = tuple(train_data.class_names.tolist()) # Model. args.min_size = 600 args.max_size = 1000 args.anchor_scales = (4, 8, 16, 32) train_common.train( args=args, train_data=train_data, test_data=test_data, evaluator_type='voc', )