def first_hid_rec(value, good_data, bad_data): build_network = buildNetwork(len(good_data[0]), value, 2, bias=True, hiddenclass=SigmoidLayer, outclass=SoftmaxLayer, recurrent=True) trainer = BackpropTrainer(build_network, get_supervised_data_set(good_data, bad_data)) result = trainer.trainUntilConvergence() return result[0][-1]
def third_hidden_lvl(first_hidd, second_hidd, value, good_data, bad_data): build_network = buildNetwork(len(good_data[0]), first_hidd, second_hidd, value, 2, bias=True, hiddenclass=SigmoidLayer, outclass=SoftmaxLayer) trainer = BackpropTrainer(build_network, get_supervised_data_set(good_data, bad_data)) result = trainer.trainUntilConvergence() return result[0][-1]
def get_third_nn(value, good_data, bad_data): build_network = FeedForwardNetwork() inLayer = LinearLayer(len(good_data[0])) hiddenLayer = SigmoidLayer(value) outLayer = SigmoidLayer(1) build_network.addInputModule(inLayer) build_network.addModule(hiddenLayer) build_network.addOutputModule(outLayer) in_to_hidden = FullConnection(inLayer, hiddenLayer) hidden_to_out = FullConnection(hiddenLayer, outLayer) in_to_out = FullConnection(inLayer, outLayer) build_network.addConnection(in_to_hidden) build_network.addConnection(hidden_to_out) build_network.addConnection(in_to_out) build_network.sortModules() trainer = BackpropTrainer(build_network, get_supervised_data_set(good_data, bad_data)) result = trainer.trainUntilConvergence() return result[0][-1]
def hidden0_tst(good_data, n, bad_file): net = buildNetwork(len(good_data[0]), n, 2) trainer = BackpropTrainer(net, get_supervised_data_set(good_data, bad_file)) # trainer.trainUntilConvergence() return trainer