Example #1
0
def main(filename):
    """
	pipeline for representation learning for all papers for a given name reference
	"""
    latent_dimen = 40
    alpha = 0.1
    matrix_reg = 0.1
    num_epoch = 2
    sampler_method = 'uniform'

    dataset = parser.DataSet(filename)
    dataset.reader_arnetminer()
    bpr_optimizer = embedding.BprOptimizer(latent_dimen, alpha, matrix_reg)
    # pp_sampler = sampler.CoauthorGraphSampler()
    # pd_sampler = sampler.BipartiteGraphSampler()
    dd_sampler = sampler.LinkedDocGraphSampler()
    dt_sampler = sampler.DocumentTitleSampler()
    djconf_sampler = sampler.DocumentJConfSampler()
    dyear_sampler = sampler.DocumentYearSampler()
    dorg_sampler = sampler.DocumentOrgSampler()
    dabstract_sampler = sampler.DocumentAbstractSampler()
    eval_f1 = eval_metric.Evaluator()

    run_helper = train_helper.TrainHelper()
    # avg_f1 = run_helper.helper(num_epoch, dataset, bpr_optimizer,
    #                            pp_sampler, pd_sampler, dd_sampler,
    #                            dt_sampler,djconf_sampler,
    #                            eval_f1, sampler_method)

    # 基本的,不加任何额外的东西
    avg_f1, avg_pre, avg_rec = run_helper.helper(
        num_epoch,
        dataset,
        bpr_optimizer,
        # pp_sampler,
        # pd_sampler,
        dd_sampler,
        dt_sampler,
        # djconf_sampler,
        # dorg_sampler,
        # dyear_sampler,
        dabstract_sampler,
        eval_f1,
        sampler_method,
        filename)

    F1_Max_List.append(avg_f1)
    F1_Max_List_pre.append(avg_pre)
    F1_Max_List_rec.append(avg_rec)

    print avg_f1
def main(args):
    """
    pipeline for representation learning for all papers for a given name reference
    """
    dataset = data_parser.DataSet(args.file_path)
    bpr_optimizer = embedding.BprOptimizer(args.latent_dimen, args.alpha,
                                           args.matrix_reg)
    pp_sampler = sampler.CoauthorGraphSampler()
    pd_sampler = sampler.BipartiteGraphSampler()
    dd_sampler = sampler.LinkedDocGraphSampler()
    eval_f1 = eval_metric.Evaluator()
    run_helper = train_helper.TrainHelper()
    return run_helper.helper(args.num_epoch, dataset, bpr_optimizer,
                             pp_sampler, pd_sampler, dd_sampler, eval_f1,
                             args.sampler_method)
Example #3
0
def main(file_path, latent_dimen, alpha, matrix_reg, num_epoch,
         sampler_method):
    """
    pipeline for representation learning for all papers for a given name reference
    """
    dataset = parser_helper.DataSet(file_path)
    paper_count = dataset.reader()

    bpr_optimizer = embedding.BprOptimizer(latent_dimen, alpha, matrix_reg)
    pp_sampler = sampler.CoauthorGraphSampler()
    pd_sampler = sampler.BipartiteGraphSampler()
    dd_sampler = sampler.LinkedDocGraphSampler()
    eval_f1 = eval_metric.Evaluator()

    run_helper = train_helper.TrainHelper()
    pairwise_precision, pairwise_recall, pairwise_f1 = run_helper.helper(
        num_epoch, dataset, bpr_optimizer, pp_sampler, pd_sampler, dd_sampler,
        eval_f1, sampler_method)

    return paper_count, pairwise_precision, pairwise_recall, pairwise_f1