Example #1
0
def main():
    """
    Main function to spawn the train and test process.
    """
    args = parse_args()
    cfg = load_config(args)
    print('=' * 20)
    # print(cfg)
    print('Num of GPUs: ', cfg.NUM_GPUS)
    print(cfg.TRAIN)
    print(cfg.TEST)
    print('output dir is: ', cfg.OUTPUT_DIR)

    # Perform training.
    if cfg.TRAIN.ENABLE:
        print("begin to trian the model... ")
        if cfg.NUM_GPUS > 1:
            print('gpu is over 1')
            torch.multiprocessing.spawn(
                mpu.run,
                nprocs=cfg.NUM_GPUS,
                args=(
                    cfg.NUM_GPUS,
                    train,
                    args.init_method,
                    cfg.SHARD_ID,
                    cfg.NUM_SHARDS,
                    cfg.DIST_BACKEND,
                    cfg,
                ),
                daemon=False,
            )
        else:
            train(cfg=cfg)

    # Perform multi-clip testing.
    if cfg.TEST.ENABLE:
        print("begin to test the model... ")
        if cfg.NUM_GPUS > 1:
            torch.multiprocessing.spawn(
                mpu.run,
                nprocs=cfg.NUM_GPUS,
                args=(
                    cfg.NUM_GPUS,
                    test,
                    args.init_method,
                    cfg.SHARD_ID,
                    cfg.NUM_SHARDS,
                    cfg.DIST_BACKEND,
                    cfg,
                ),
                daemon=False,
            )
        else:
            test(cfg=cfg)
Example #2
0
def main():
    """
    Main function to spawn the train and test process.
    """
    args = parse_args()
    cfg = load_config(args)

    # Perform training.
    print("Number of GPUS: ", cfg.NUM_GPUS)
    if cfg.TRAIN.ENABLE:
        if cfg.NUM_GPUS > 1:
            torch.multiprocessing.spawn(
                mpu.run,
                nprocs=cfg.NUM_GPUS,
                args=(
                    cfg.NUM_GPUS,
                    train,
                    args.init_method,
                    cfg.SHARD_ID,
                    cfg.NUM_SHARDS,
                    cfg.DIST_BACKEND,
                    cfg,
                ),
                daemon=False,
            )
        else:
            train(cfg=cfg)

    # Perform multi-clip testing.
    if cfg.TEST.ENABLE:
        if cfg.NUM_GPUS > 1:
            torch.multiprocessing.spawn(
                mpu.run,
                nprocs=cfg.NUM_GPUS,
                args=(
                    cfg.NUM_GPUS,
                    test,
                    args.init_method,
                    cfg.SHARD_ID,
                    cfg.NUM_SHARDS,
                    cfg.DIST_BACKEND,
                    cfg,
                ),
                daemon=False,
            )
        else:
            test(cfg=cfg)
Example #3
0
    # squared hinge loss
    loss = T.mean(T.sqr(T.maximum(0., 1. - target * train_output)))

    params = lasagne.layers.get_all_params(cnn, trainable=True)
    updates = lasagne.updates.adam(loss_or_grads=loss, params=params, learning_rate=LR)

    test_output = lasagne.layers.get_output(cnn, deterministic=True)
    test_loss = T.mean(T.sqr(T.maximum(0., 1. - target * test_output)))
    test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)), dtype=theano.config.floatX)

    # Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
    # and returning the corresponding training loss:
    train_fn = theano.function([input, target, LR], loss, updates=updates)

    # Compile a second function computing the validation loss and accuracy:
    val_fn = theano.function([input, target], [test_loss, test_err])

    print('Training...')

    train_net.train(
            train_fn, val_fn,
            cnn,
            batch_size,
            LR_start, LR_decay,
            num_epochs,
            train_set.X, train_set.y,
            valid_set.X, valid_set.y,
            test_set.X, test_set.y,
            shuffle_parts=shuffle_parts)
Example #4
0
# load your own csv or other format data here
train_file = os.path.join(current_path, 'xxx.csv')

# load the feature npy to the memory if possible(for a faster feature reading speed)
feature_npy = 'xxx.npy'

# data loading
train_pair = data_process.get_data_pair(train_file)

# pre-loding the feature to the memory
c3d_feature = data_process.load_feature(feature_npy)

pair = {'train': train_pair}
show_datasets = {x: c3d_datasets(pair[x], c3d_feature, x) for x in ['train']}
show_data_sizes = {x: len(show_datasets[x]) for x in ['train']}

dataloaders = {x: DataLoader(show_datasets[x], batch_size = 256, shuffle = True, num_workers = 4)
              for x in ['train']}
use_gpu = torch.cuda.is_available()


# initilize the network and the optimizer stretigies
model = embedding_net()
net = triplet_net(model)
net = net.cuda()
criterion = torch.nn.MarginRankingLoss(margin = 0.5)
optimizer = optim.SGD(net.parameters(), lr = 0.01, momentum = 0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size = 10, gamma = 0.1)

train(dataloaders, net, criterion, optimizer, exp_lr_scheduler, show_data_sizes, use_gpu,  num_epoches = 100)
Example #5
0
def main():
    # 设定训练网络所用的硬件设备
    device = torch.device('cuda')
    # 选择网络模型
    # net = EEGNet1_3().to(device)
    net = EEGNet2018().to(device)

    # init all
    # 初始化总轮回数,用来显示训练曲线
    global_step = 0
    # 初始化网络权重
    net = train_net.weights_init(net)
    # 是否可视化,1 or 0
    vis = 1
    if vis == 1:
        viz = Visdom()
    if vis == 1:
        viz.line([0.], [0.], win='train_loss', update='append', opts={'title': 'train_loss'})
        # viz.line([0.], [0.], win='test_results', update='append', opts={'title': 'test_results'})

    # %%
    """loaddata"""
    dataset_A_train = {}
    targets_A_train = {}
    dataset_A_hold = {}
    targets_A_hold = {}
    filename_train = "G:\EEGNet\data\EEGDataset\ERP\TrainDatas/Circle/dataset_A_train.mat"
    filename_label = "G:\EEGNet\data\EEGDataset\ERP\TrainDatas/Circle/dataset_A_label.mat"
    filename_test = "G:\EEGNet\data\EEGDataset\ERP\TestDatas/Circle/dataset_A_test.mat"
    filename_test_label = "G:\EEGNet\data\EEGDataset\ERP\TestDatas/Circle/dataset_A_label.mat"

    # %%
    dataset_A_train[0] = scipy.io.loadmat(filename_train)['Tdata1']
    targets_A_train[0] = scipy.io.loadmat(filename_label)['Tlabel1']
    dataset_A_train[1] = scipy.io.loadmat(filename_train)['Tdata2']
    targets_A_train[1] = scipy.io.loadmat(filename_label)['Tlabel2']
    dataset_A_train[2] = scipy.io.loadmat(filename_train)['Tdata3']
    targets_A_train[2] = scipy.io.loadmat(filename_label)['Tlabel3']
    dataset_A_train[3] = scipy.io.loadmat(filename_train)['Tdata4']
    targets_A_train[3] = scipy.io.loadmat(filename_label)['Tlabel4']
    dataset_A_train[4] = scipy.io.loadmat(filename_train)['Tdata5']
    targets_A_train[4] = scipy.io.loadmat(filename_label)['Tlabel5']

    dataset_A_hold[0] = scipy.io.loadmat(filename_train)['Vdata1']
    targets_A_hold[0] = scipy.io.loadmat(filename_label)['Vlabel1']
    dataset_A_hold[1] = scipy.io.loadmat(filename_train)['Vdata2']
    targets_A_hold[1] = scipy.io.loadmat(filename_label)['Vlabel2']
    dataset_A_hold[2] = scipy.io.loadmat(filename_train)['Vdata3']
    targets_A_hold[2] = scipy.io.loadmat(filename_label)['Vlabel3']
    dataset_A_hold[3] = scipy.io.loadmat(filename_train)['Vdata4']
    targets_A_hold[3] = scipy.io.loadmat(filename_label)['Vlabel4']
    dataset_A_hold[4] = scipy.io.loadmat(filename_train)['Vdata5']
    targets_A_hold[4] = scipy.io.loadmat(filename_label)['Vlabel5']

    # %%
    dataset_test = scipy.io.loadmat(filename_test)['data']
    targets_test = scipy.io.loadmat(filename_test_label)['labels']

    X_test = np.reshape(dataset_test, [dataset_test.shape[0], 1, dataset_test.shape[1], dataset_test.shape[2]]).astype(
        'float32')
    y_test = np.reshape(targets_test, [targets_test.shape[0], 1]).astype('float32')

    for epoch1 in range(5):  # loop over the dataset multiple times
        X_train = np.reshape(dataset_A_train[epoch1],
                             [dataset_A_train[epoch1].shape[0], 1, dataset_A_train[epoch1].shape[1],
                              dataset_A_train[epoch1].shape[2]]).astype(
            'float32')
        y_train = np.reshape(targets_A_train[epoch1], [targets_A_train[epoch1].shape[0], 1]).astype('float32')

        X_val = np.reshape(dataset_A_hold[epoch1],
                           [dataset_A_hold[epoch1].shape[0], 1, dataset_A_hold[epoch1].shape[1],
                            dataset_A_hold[epoch1].shape[2]]).astype(
            'float32')
        y_val = np.reshape(targets_A_hold[epoch1], [targets_A_hold[epoch1].shape[0], 1]).astype('float32')

        for epoch2 in range(net.epoch):
            print("\nEpoch: ", epoch2, epoch1)
            print("\nglobal_step: ", global_step)
            # 训练网络:输出loss值、global_step用来绘制曲线,训练出的新网络net
            loss, global_step, net = train_net.train(net, X_train, y_train, net.batchSize, net.learnRate, global_step, vis)

            if vis == 1:
                viz.line([loss.item()], [global_step], win='train_loss', update='append', opts={'title':'train_loss'})
            # validation and test: 输出预测值,vali_results展示所有指标,test_loss用来绘制test曲线
            prediction, valid_results, valid_loss = train_net.valid(net, X_val, y_val)
            pred, test_results, test_loss = train_net.valid(net, X_test, y_test)
            if vis == 1:
                viz.line([test_results], [global_step], win='test_results', update='append', opts={'title':'test_results'})

            print('Parameters:["acc", "auc", "recall", "precision","fmeasure"]')
            print('validation_results', valid_results)
            print('test_results', test_results)