import torch from train_test import Justreducelr_0, ShallowNet, SimpleCNN from train_test import test, set_record_file from MusicDataset import MusicDataThree from MusicDataset import Musicdata_v7 from MusicDataset import Musicdata_LSTM import torch.nn as nn import numpy as np # from MusicDataset import Musicdata_LSTM basic_dir = 'D:/OneDrive-UCalgary/OneDrive - University of Calgary/data/cal500/' basic_dir = '../' set_record_file('record-modeltest.txt') print('Test of deep convolutional network') data_dir = basic_dir + 'raw-data-v5/' data_file = basic_dir + 'music-data-v5.csv' label_file = basic_dir + 'labels-v5.csv' # net_name = 'shallownet' net_name = '0-justreducelr' # net_name = 'simplecnn-freq' model_name = net_name + '.pt' net = Justreducelr_0() # deep convolutional network net.load_state_dict(torch.load(model_name)) net.eval() # test_set = MusicDataThree(data_file=data_file, label_file=label_file, start=2560, total=3219) test_set = MusicDataThree(data_file=data_file, label_file=label_file, start=2560, total=3219) test(net, net_name=net_name, dataset=test_set)
from train_test import train, test, set_record_file from train_test import Coon_0_2 as Net # time.sleep(3600*4) print('start') set_record_file('record-coon-128.txt') net_name = '2-0+coon-128' model_path = net_name + '.pt' net = Net() net = train(net, model_path=model_path) test(net, net_name)
from train_test import train, test, set_record_file from train_test import Coon_0_2 as Net from MusicDataset import MusicDataThree, ExpNorm # time.sleep(3600*4) print('start') set_record_file('record-expoon.txt') net_name = '2-0+expcoon' model_path = net_name + '.pt' tsfm = ExpNorm() train_set = MusicDataThree(transform=tsfm, start=0, total=1) test_set = MusicDataThree(transform=tsfm, start=0, total=1) net = Net() net = train(net, model_path=model_path, dataset=train_set) test(net, net_name, dataset=test_set)
from train_test import train, test, set_record_file from MusicDataset import MusicDataThree, IniNorm print('start') net_name = '0-justreducelr-ininorm' model_path = net_name + '.pt' set_record_file('record-normreducelr.txt') tsfm = IniNorm() train_set = MusicDataThree(transform=tsfm, start=0, total=1) test_set = MusicDataThree(transform=tsfm, start=0, total=1) net = train(model_path=model_path, dataset=train_set) test(net, net_name, dataset=test_set)
from train_test import train, test, set_record_file from train_test import Coon_0_2 as Net from MusicDataset import MusicDataThree, IniNorm # time.sleep(3600*4) print('start') set_record_file('record-normcoon.txt') net_name = '2-0+normcoon' model_path = net_name + '.pt' tsfm = IniNorm() train_set = MusicDataThree(transform=tsfm, start=0, total=1) test_set = MusicDataThree(transform=tsfm, start=0, total=1) net = Net() net = train(net, model_path=model_path, dataset=train_set) test(net, net_name, dataset=test_set)
import sys arg_len = len(sys.argv) net_name = sys.argv[1] # net_name = 'fzdata' # net_name = 'fzdata-freq' # net_name = 'fzdata-fully' # net_name = 'fzdata-comb' mode = sys.argv[2] # mode = 'fully' # mode = 'conv' # mode = anyone else basic_dir = 'D:/OneDrive-UCalgary/OneDrive - University of Calgary/data/cal500/' basic_dir = '../' if net_name == 'fzdata-freq': data_file = basic_dir + 'music-data-v9-freq.csv' else: data_file = basic_dir + 'music-data-v9.csv' # data_file = basic_dir + 'music-data-v7.csv' # data_file = basic_dir + 'music-data-v9-freq.csv' label_file = basic_dir + 'labels-v5.csv' record_file = 'record-' + net_name + '.txt' model_path = net_name + '.pt' set_record_file(record_file) net = Net(mode) # net.apply(weights_init) train_set = Musicdata_v7(data_file=data_file, label_file=label_file, start=0, total=2560) test_set = Musicdata_v7(data_file=data_file, label_file=label_file, start=2560, total=3219) net = train(net, model_path=model_path, dataset=train_set) test(net, net_name, dataset=test_set)
from train_test import train, test, set_record_file from train_test import Justreducelr_0 as Net import torch # time.sleep(3600*16) print('start') net_name = '0-justreducelr' model_path = net_name + '.pt' set_record_file('record' + net_name + '.txt') net = Net() net.load_state_dict(torch.load(model_path)) net.eval() net = train(net=net, model_path=model_path) test(net, net_name)
from train_test import train, test, set_record_file # time.sleep(3600*16) print('start') net_name = '0-justreducelr' model_path = net_name + '.pt' set_record_file('record-60.txt') net = train(model_path=model_path) test(net, net_name)