def run_experiment(hparams): """Train the model then export it for tf.model_analysis evaluation. Args: hparams: Holds hyperparameters used to train the model as name/value pairs. """ estimator = train_and_maybe_evaluate(hparams) schema = taxi.read_schema(hparams.schema_file) # Save a model for tfma eval eval_model_dir = os.path.join(hparams.output_dir, EVAL_MODEL_DIR) receiver_fn = lambda: model.eval_input_receiver_fn( # pylint: disable=g-long-lambda hparams.tf_transform_dir, schema) tfma.export.export_eval_savedmodel(estimator=estimator, export_dir_base=eval_model_dir, eval_input_receiver_fn=receiver_fn)
def run_experiment(hparams): """Train the model then export it for tf.model_analysis evaluation. Args: hparams: Holds hyperparameters used to train the model as name/value pairs. """ estimator = train_and_maybe_evaluate(hparams) schema = taxi.read_schema(hparams.schema_file) # Save a model for tfma eval eval_model_dir = os.path.join(hparams.output_dir, EVAL_MODEL_DIR) receiver_fn = lambda: model.eval_input_receiver_fn( # pylint: disable=g-long-lambda hparams.tf_transform_dir, schema) tfma.export.export_eval_savedmodel( estimator=estimator, export_dir_base=eval_model_dir, eval_input_receiver_fn=receiver_fn)
def eval_input_receiver_fn(): return model.eval_input_receiver_fn(tf_transform_output)